Open Net Zero logo

Filters

Formats:
Select...
Licenses:
Select...
Organizations:
Select...
Tags:
Select...
Shared:
Sensitivities:
Datasets
L o a d i n g
Advanced TidGen Power System - Deployment and Mooring SystemSource

The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU) device. This submission includes the technical report on deployment and mooring system design requirements and subsystem risk analysis. A primary goal of the Advanced TidGen Power System project is to adapt ORPC's buoyant tensioned mooring system (BTMS) to the Advanced TidGen turbine generator unit (TGU). The TGU, as determined at the System Definition Review held in June 2017, is a dual-driveline, stacked system that implements hydrodynamic improvements for turbine design, turbine-turbine interactions and turbine-structure interactions. A major challenge for mooring and deployment system design will be to account for the substantial increases in loading incurred from increased power production and the resulting system drag during operation. Figure 1 shows the current system as presented for the Preliminary Design Review held in October 2017. This document addresses major risks, preventative measures, and mitigation strategies that have influenced this design and continue to drive development work toward the next design iteration. Also included is the technical report on mooring system design, supporting analytical models, and subsystem FMEA. Maine Marine Composites (MMC) has developed a simulation model to design a mooring system for Ocean Renewable Power Company) TidGen tidal energy converter. This document describes the simulation model, results, and the status of the current mooring system design. A preliminary anchor design is also proposed by MMC. The anchor is primarily a concrete gravity anchor. Structural steel is embedded inside the concrete to provide strength for the chain connection points. Steel L Channels also protrude underneath the concrete to act as a skirt to provide additional resistance.

0
No licence known
Tags:
CECHydrokineticMHKMarineTGUTidGenanchorbending stresscomponent failurecross flow turbinecross-flow turbinecurrentdeploymentdesigndesign analysisdesign considerationsenergyfailure modeling and effects analysisfatiguefmeagravity anchorlimit statesmaximum power outputmitigationmodel specificationsmooringmorring failureorpcpowerriskssimulaitonsystemtechnologytidaltidal currenttidal powerturbine generator deviceturbine generator unit
Formats:
PDF
National Renewable Energy Laboratory (NREL)about 1 year ago
Data from: Exercise plasma metabolomics and xenometabolomics in obese, sedentary, insulin-resistant women: impact of a fitness and weight loss intervention

Insulin resistance has wide-ranging effects on metabolism but there are knowledge gaps regarding the tissue origins of systemic metabolite patterns, and how patterns are altered by fitness and metabolic health. To address these questions, plasma metabolite patterns were determined every 5 min during exercise (30 min, ~45% of V̇O2peak, ~63 W) and recovery in overnight-fasted sedentary, obese, insulin resistant women under controlled conditions of diet and physical activity. We hypothesized that improved fitness and insulin sensitivity following a ~14 wk training and weight loss intervention would lead to fixed workload plasma metabolomics signatures reflective of metabolic health and muscle metabolism. Pattern analysis over the first 15 min of exercise—regardless of pre- vs. post-intervention status—highlighted anticipated increases in fatty acid tissue uptake and oxidation (e.g., reduced long-chain fatty acids), diminution of non-oxidative fates of glucose (e.g., lowered sorbitol-pathway metabolites and glycerol-3-galactoside [possible glycerolipid synthesis metabolite]), and enhanced tissue amino acid use (e.g., drops in amino acids; modest increase in urea). A novel observation was that exercise significantly increased several xenometabolites (“non-self” molecules, from microbes or foods), including benzoic acid/salicylic acid/salicylaldehyde, hexadecanol/octadecanol/dodecanol, and chlorogenic acid. In addition, many non-annotated metabolites changed with exercise. Although exercise itself strongly impacted the global metabolome, there were surprisingly few intervention-associated differences despite marked improvements in insulin sensitivity, fitness, and adiposity. These results, and previously-reported plasma acylcarnitine profiles, support the principle that most metabolic changes during sub-maximal aerobic exercise are closely tethered to absolute ATP turnover rate (workload), regardless of fitness or metabolic health status. Supporting Materials include graphs of blood patterns of metabolites in adult women during a sub-maximal exercise bout and recovery period, and primary data in spreadsheet format on model performance, exercise and recovery, and correlation statistics for metabolites. Journal information -- Am J Physiol, Endo & Metabolism, Exercise plasma metabolomics and xenometabolomics in obese, sedentary, insulin-resistant women: impact of a fitness and weight loss intervention.

0
No licence known
Tags:
NP107Obesitydiabetesfatiguefitnessphysical activity
Formats:
PDFxlb
United States Department of Agriculture10 months ago
Foam Fracturing Study for Stimulation Development of Enhanced Geothermal SystemsSource

This is a final technical report for the project: Foam Fracturing Study for Stimulation Development of Enhanced Geothermal Systems (EGS). The goal is to demonstrate the feasibility of foam fracturing in EGS applications. The project, led by Oak Ridge National Laboratory (ORNL), was conducted in collaboration with Temple University. The report describes the research activities with Task 1 at ORNL: foam fracturing testing system development and experimental study on foam fracturing, and Task 2 at Temple University: foam testing and foam characterization. Main findings are: 1. A foam fracturing test system has been developed at ORNL, which can be used to perform foam fracturing under pressure up to 6,000 psi. The system monitors foam density during fracturing online and is capable of testing materials in both monotonic and cyclic (up to 50 Hz) injections. 2. Foam fracturing tests were carried out on Charcoal black granite specimens with a blind borehole to the middle length. Two diameters of blind borehole were tested; G2 series: 9.53 mm and G3 series: 4.76 mm. N2-in-water foam was used with AOS as a surfactant. 3. There was a hole-size effect on fracture initiation pressure. The effect is smaller in the case of foam, which was influenced by the high penetrability of gas in foam. Breakdown pressure showed a behavior just as that of fracture pressure; namely an increased value for small hole samples, while the effect in water fracture was more impressive than in foam fracture. 4. Water mass was reduced in foam fracturing within similar range of breakdown pressures. In G2 series, it was decreased from 10.44 g for water fracturing to 5.17 g, representing more than 50% water reduction. Therefore, there is the potential to reduce water use in EGS stimulation through foam fracturing. 5. Use of cyclic injection has the potential to reduce the breakdown pressure and seismicity in EGS application. Experiments using 4-s cycle period found that specimens can be fractured with a low number of cycles. The fatigue pressure was approximately 64 - 77% of monotonic breakdown pressure for water fracturing and 58 - 94% of the breakdown pressure for foam fracturing. 6. A foam stability testing system has been developed that can test foam at 220 Deg C to 2,000 psi. Tested components of candidate foams included two gases: N2 and CO2; 4 surfactants: AOS, SDS, NP-40 and CTAC; 5 stabilizing agents: guar, bentonite clay, borate salt, silica NPs, and GO. 7. N2 and AOS provided the most stable performance over the tested ranges. Furthermore, the AOS foam with stabilizing agents of guar and borate salt (crosslinker) offered the highest half-life of 20 minutes at 200 Deg C and 1,000 psi. 8. Arrhenius equation and modified power law have been demonstrated to fit well the half-time vs. temperature and pressure data, respectively. These relations can be useful to provide the suggestion for future foam stability study. This submission contains the supporting data developed during the project: 1) A final technical report 2) Granite fracturing data in monotonic and cyclic injections with water and N2 foam Foam performance data in various temperatures and pressures, including half-time, is submitted separately.

0
No licence known
Tags:
EGSblind boreholedataenergyenhanced geothermal systemsfatiguefoamfoam fracturingfoam stabilityfracturinggeothermalsample datasimulationstresstesttime datawaterless stimulation
Formats:
PDFZIP
National Renewable Energy Laboratory (NREL)about 1 year ago