Open Net Zero logo

Filters

Formats:
Select...
Licenses:
Select...
Organizations:
Select...
Tags:
Select...
Shared:
Sensitivities:
Datasets
L o a d i n g
3D Model of the McGinness Hills Geothermal AreaSource

The McGinness Hills geothermal system lies in a ~8.5 km wide, north-northeast trending accommodation zone defined by east-dipping normal faults bounding the Toiyabe Range to the west and west-dipping normal faults bounding the Simpson Park Mountains to the east. Within this broad accommodation zone lies a fault step-over defined by north-northeast striking, west-dipping normal faults which step to the left at roughly the latitude of the McGinness Hills geothermal system. The McGinness Hills 3D model consists of 9 geologic units and 41 faults. The basal geologic units are metasediments of the Ordovician Valmy and Vininni Formations (undifferentiated in the model) which are intruded by Jurassic granitic rocks. Unconformably overlying is a ~100s m-thick section of Tertiary andesitic lava flows and four Oligocene-to-Miocene ash-flow tuffs: The Rattlesnake Canyon Tuff, tuff of Sutcliffe, the Cambell Creek Tuff and the Nine Hill tuff. Overlying are sequences of pre-to-syn-extensional Quaternary alluvium and post-extensional Quaternary alluvium. 10-15 degrees eastward dip of the Tertiary stratigraphy is controlled by the predominant west-dipping fault set. Geothermal production comes from two west dipping normal faults in the northern limb of the step over. Injection is into west dipping faults in the southern limb of the step over. Production and injection sites are in hydrologic communication, but at a deep level, as the northwest striking fault that links the southern and northern limbs of the step-over has no permeability.

0
No licence known
Tags:
3D ModelMcGinness HillsMcGinness Hills Geothermal Areacross sectioncross-sectiondatafaultingfaultsgeologic contactgeologic unitsgeologygeospatial datageothermalstratigraphic unitsstratigraphytuff
Formats:
ZIP
National Renewable Energy Laboratory (NREL)about 1 year ago
3D Model of the Neal Hot Springs Geothermal AreaSource

The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping

0
No licence known
Tags:
3D ModelNeal Hot SpringsNeal Hot Springs Geothermal Areacross sectioncross-sectiondatafaultingfaultsgeologic contactgeologic unitsgeologygeospatial datageothermalstratigraphic unitsstratigraphy
Formats:
ZIP
National Renewable Energy Laboratory (NREL)about 1 year ago
3D Model of the San Emidio Geothermal AreaSource

The San Emidio geothermal system is characterized by a left-step in a west-dipping normal fault system that bounds the western side of the Lake Range. The 3D geologic model consists of 5 geologic units and 55 faults. Overlying Jurrassic-Triassic metasedimentary basement is a ~500 m-1000 m thick section of the Miocene lower Pyramid sequence, pre- syn-extensional Quaternary sedimentary rocks and post-extensional Quaternary rocks. 15-30 degrees eastward dip of the stratigraphy is controlled by the predominant west-dipping fault set. Both geothermal production and injection are concentrated north of the step over in an area of closely spaced west dipping normal faults.

0
No licence known
Tags:
3D ModelSan EmidioSan Emidio Geothermal Areacross sectioncross-sectiondatafaultingfaultsgeologic contactgeologic unitsgeologygeospatial datageothermalstratigraphic unitsstratigraphy
Formats:
ZIP
National Renewable Energy Laboratory (NREL)about 1 year ago
3D Model of the Tuscarora Geothermal AreaSource

The Tuscarora geothermal system sits within a ~15 km wide left-step in a major west-dipping range-bounding normal fault system. The step over is defined by the Independence Mountains fault zone and the Bull Runs Mountains fault zone which overlap along strike. Strain is transferred between these major fault segments via and array of northerly striking normal faults with offsets of 10s to 100s of meters and strike lengths of less than 5 km. These faults within the step over are one to two orders of magnitude smaller than the range-bounding fault zones between which they reside. Faults within the broad step define an anticlinal accommodation zone wherein east-dipping faults mainly occupy western half of the accommodation zone and west-dipping faults lie in the eastern half of the accommodation zone. The 3D model of Tuscarora encompasses 70 small-offset normal faults that define the accommodation zone and a portion of the Independence Mountains fault zone, which dips beneath the geothermal field. The geothermal system resides in the axial part of the accommodation, straddling the two fault dip domains. The Tuscarora 3D geologic model consists of 10 stratigraphic units. Unconsolidated Quaternary alluvium has eroded down into bedrock units, the youngest and stratigraphically highest bedrock units are middle Miocene rhyolite and dacite flows regionally correlated with the Jarbidge Rhyolite and modeled with uniform cumulative thickness of ~350 m. Underlying these lava flows are Eocene volcanic rocks of the Big Cottonwood Canyon caldera. These units are modeled as intracaldera deposits, including domes, flows, and thick ash deposits that change in thickness and locally pinch out. The Paleozoic basement of consists metasedimenary and metavolcanic rocks, dominated by argillite, siltstone, limestone, quartzite, and metabasalt of the Schoonover and Snow Canyon Formations. Paleozoic formations are lumped in a single basement unit in the model. Fault blocks in the eastern portion of the model are tilted 5-30 degrees toward the Independence Mountains fault zone. Fault blocks in the western portion of the model are tilted toward steeply east-dipping normal faults. These opposing fault block dips define a shallow extensional anticline. Geothermal production is from 4 closely-spaced wells, that exploit a west-dipping, NNE-striking fault zone near the axial part of the accommodation zone.

0
No licence known
Tags:
3D ModelTuscarora Geothermal Areacross sectioncross-sectiondatafaultingfaultsgeologic contactgeologic unitsgeologygeospatial datageothermalstratigraphic unitsstratigraphytuscarora
Formats:
ZIP
National Renewable Energy Laboratory (NREL)about 1 year ago
Full Moment Tensor Inversion SoftwareSource

The link points to a website at NCEDC to download the full moment tensors inversion software The moment tensor analysis conducted in the current project is based on the full moment tensor model described in Minson and Dreger (2008). The software including source, examples and tutorial can be obtained from ftp://ncedc.org/outgoing/dreger (download file pasi-nov282012.tar.gz). Performance criteria, mathematics and test results are provided by Minson and Dreger (2008), Ford et al. (2008, 2009, 2010, 2012) and Saikia (1994). References: Ford, S., D. Dreger and W. Walter (2008). Source Characterization of the August 6, 2007 Crandall Canyon Mine Seismic Event in Central Utah, Seism. Res. Lett., 79, 637-644. Ford, S. R., D. S. Dreger and W. R. Walter (2009). Identifying isotropic events using a regional moment tensor inversion, J. Geophys. Res., 114, B01306, doi:10.1029/2008JB005743. Ford, S. R., D. S. Dreger and W. R. Walter (2010). Network sensitivity solutions for regional moment tensor inversions, Bull. Seism. Soc. Am., 100, p. 1962-1970. Ford, S. R., W. R. Walter, and D. S. Dreger (2012). Event discrimination using regional moment 665 tensors with teleseismic-P constraints, Bull. Seism. Soc. Am. 102, 867-872. Minson, S. and D. Dreger (2008), Stable Inversions for Complete Moment Tensors, Geophys. J. Int., 174, 585-592. Saikia, C.K. (1994), Modified Frequency-Wavenumber Algorithm for Regional Seismograms using Filons Quadrature: Modeling of Lg Waves in Eastern North America. Geophys. J. Int., 118, 142-158.

0
No licence known
Tags:
EGSanalysisearthquakeenergyexamplefaultfaultingfracturefull moment tensor inversiongenerationgeophysicalgeophysicsgeothermalhydraulicinducedinjectioninversionmicroseismicitymoment tensormonitoringpassiveseismicseismicitysoftwarestimulationtutorial
Formats:
HTML
National Renewable Energy Laboratory (NREL)about 1 year ago
Geologic Map and Cross Sections of the McGinness Hills Geothermal Area - GIS DataSource

Geologic map data in shapefile format that includes faults, unit contacts, unit polygons, attitudes of strata and faults, and surficial geothermal features. 5 cross-sections in Adobe Illustrator format. Comprehensive catalogue of drill-hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. 3D model constructed with EarthVision using geologic map data, cross-sections, drill-hole data, and geophysics.

0
No licence known
Tags:
3D modelBasin and RangeEarthVisionGIS dataGeologic Cross-SectionsGeologic MapGeoogic Cross-sectionsGeosoft dataGreat BasinIllustrator filesMcGinness Hills Geothermal AreaNevadaStructural Controlscross-sectiondrill-hole datafaultingfaultsgeologic contactgeologic unitgeologygeophysicsgeosoftgeospatial datageothermallithologylithology logshape fileshapefileshapefilesstratastratigraphic unitstratigraphysurficial geothermal featurestemperaturetemperature dataunit contactsunit polygonvector datawell datawell locations
Formats:
ZIP
National Renewable Energy Laboratory (NREL)about 1 year ago
Geologic Map and GIS Data for the Patua Geothermal AreaSource

Patua-ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, veins, dikes, unit polygons, and attitudes of strata and faults. - List of stratigraphic units. - Locations of geothermal wells. - Locations of 40Ar/39Ar and tephra samples.

0
No licence known
Tags:
ArcGISESRIGIS dataGeodatabaseGeologic MapPatua Geothermal Areacontactsdikesfaultingfaultsfoldingfoldsgeologic contactsgeospatial datageothermalpatuastratastratigraphic unitsstratigraphytephra samplesunit polygonsveinswell locations
Formats:
ZIP
National Renewable Energy Laboratory (NREL)about 1 year ago
Geologic Map and GIS Data for the Salt Wells Geothermal AreaSource

Salt Wells-ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, dikes, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Locations of 40Ar/39Ar samples.

0
No licence known
Tags:
ArcGISESRIGIS dataGeodatabaseGeologic MapQuaternary FaultsSalt Wells Geothermal AreaStructural Controlsattitudescontactsdikesfaultingfaultsfoldingfoldsgeologic contactgeospatial datageothermalsalt wellsstratastratigraphic correlationstratigraphic unitsstratigraphyunit polygons
Formats:
ZIP
National Renewable Energy Laboratory (NREL)about 1 year ago
Geologic Map and GIS Data for the Tuscarora Geothermal AreaSource

Tuscarora-ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Detailed unit descriptions of stratigraphic units. - Five cross-sections. - Locations of production, injection, and monitor wells. - 3D model constructed with EarthVision using geologic map data, cross-sections, drill-hole data, and geophysics (model not in the ESRI geodatabase).

0
No licence known
Tags:
ArcGISBasin and RangeESRIGIS dataGeodatabaseGeologic Cross-sectionsGeologic MapGeospatial dataStructural controlsSurface manifestationsTuscarora geothermal areaWell fieldcross sectioncross-sectiondrill-hole dataearthvisionfaultingfaultsfoldingfoldsgeophysicsgeothermalstratastratigraphic correlationstratigraphic unitsstratigraphyunit polygonswell locations
Formats:
ZIP
National Renewable Energy Laboratory (NREL)about 1 year ago
Geologic Map and GIS Data for the Wabuska Geothermal AreaSource

Wabuska-ESRI geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, veins, dikes, unit polygons, and attitudes of strata. - List of stratigraphic units and stratigraphic correlation diagram. - One cross-section.

0
No licence known
Tags:
ArcGISBasin and RangeESRIGIS dataGeologic MapMap dataQuaternary faultsStructural ControlsWabuska geothermal areaWabuska geothermal systemWalker Lanecontactscross sectioncross-sectiondikesfaultingfaultsfoldingfoldsgeodatabasegeologic contactgeospatialgeospatial datageothermalstratastratigraphyunit polygonsveinswabuskawabuska hot springs
Formats:
ZIP
National Renewable Energy Laboratory (NREL)about 1 year ago
Geologic Map of the Neal Hot Springs Geothermal Area - GIS DataSource

Neal Hot Springs-ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Three cross-sections. - Locations of production, injection, and exploration wells. - Locations of 40Ar/39Ar samples. - Location of XRF geochemical samples. - 3D model constructed with EarthVision using geologic map data, cross-sections, drill-hole data, and geophysics (model not in the ESRI geodatabase).

0
No licence known
Tags:
3D modelArcGISBasin and RangeESRIGIS dataGeodatabaseGeologic Cross-SectionsGeologic MapGreat BasinNeal Hot Springs Geothermal AreaOregonStructural ControlsWell Fieldcontactcross sectioncross-sectionearthvisionfaultingfaultsfoldingfoldsgeologic contactgeospatial datageothermalneal hot springssample locationsstratastratigraphic correlationstratigraphic unitsstratigraphyunit polygonswell locations
Formats:
ZIP
National Renewable Energy Laboratory (NREL)about 1 year ago
Seismic Analysis of Spatio-Temporal Fracture Generation During EGS Resource Development - Deviatoric MT, Fracture Network, and Final ReportSource

This submission contains 167 deviatoric moment tensor (MT) solutions for the seismicity observed two years prior and three years post start of injection activities at The Geysers Prati 32 EGS Demonstration. Also included is a statistical representation of the properties of 751 fractures derived from the analysis of seismicity observed two years prior and three years post start of injection activities at The Geysers Prati 32 EGS Demonstration Project. The locations of the fractures are taken from microseismic hypocenters, the fracture areas are derived from moment magnitudes via scaling relationships, and the azimuths (sigma 1) and dips (sigma 3) are derived from the results of stress analyses.

0
No licence known
Tags:
CACaliforniaDeviatoric MT SolutionsEGSGeysersHigh Temperature ReservoirThe Geysersanalysiscatalogdeviatoricearthquakeenergyeventfaultfaultingfinal reportfracturefracture networkfracture orientationfracture sizegeophysicalgeophysicsgeothermalhydraulichypocentersinducedinjectioninversionlocationmicroseismicmicroseismicitymomentmonitoringnetworkpassiveseismicseismicityshearstimulationstrainstresstensor
Formats:
CSVXLSXHTML
National Renewable Energy Laboratory (NREL)about 1 year ago
Seismic Analysis of Spatio-Temporal Fracture Generation During EGS Resource Development - Full Moment Tensors and Stress Inversion CatalogsSource

This submission contains 167 full moment tensor (MT) solutions for the seismicity observed two years prior and three years post start of injection activities. Also included are the azimuth and plunge angles for the three main stress directions sigma1, sigma 2 and sigma 3 at the Prati32 EGS demonstration site in the northwest Geysers geothermal reservoir. The data are divided into 15 time periods spanning a range of five years, including two years prior to start of injection until three years post start of injection activities.

0
No licence known
Tags:
EGSHigh Temperature ReservoirPrati 32Spatio-TemporalThe Geysersanalysisarrayazimuthcatalogdemonstrationdevelopmentearthquakeenergyenhanced geothermalfaultfaultingfracturefull MTgenerationgeophysicalgeophysicsgeothermalgeysershydraulicinducedinjectioninversionmicroseismicitymincroseismicitymomentmonitoringpassiveplungereservoirresourceseismicseismic moment tensorseismicitysolutionsstimulationstressstress changesstress orientationtensor
Formats:
XLSX
National Renewable Energy Laboratory (NREL)about 1 year ago
Simulations of Brady's-Type Fault Undergoing CO2 Push-Pull: Pressure-Transient and Sensitivity AnalysisSource

Input and output files used for fault characterization through numerical simulation using iTOUGH2. The synthetic data for the push period are generated by running a forward simulation (input parameters are provided in iTOUGH2 Brady GF6 Input Parameters.txt [InvExt6i.txt]). In general, the permeability of the fault gouge, damage zone, and matrix are assumed to be unknown. The input and output files are for the inversion scenario where only pressure transients are available at the monitoring well located 200 m above the injection well and only the fault gouge permeability is estimated. The input files are named InvExt6i, INPUT.tpl, FOFT.ins, CO2TAB, and the output files are InvExt6i.out, pest.fof, and pest.sav (names below are display names). The table graphic in the data files below summarizes the inversion results, and indicates the fault gouge permeability can be estimated even if imperfect guesses are used for matrix and damage zone permeabilities, and permeability anisotropy is not taken into account.

0
No licence known
Tags:
BradyCO2EGSGF6INCONPESTTOUGH2carbon dioxidecharacterizationenergyfaultfault modelingfaultingfracturegeothermaliTOUGH2inverse modelingparameter estimationpressure-transient testingpush-pullsensitivity analysisstimulation
Formats:
DOCXinsoutfoftplsavJPEGTXTHTML
National Renewable Energy Laboratory (NREL)about 1 year ago
Slip and Dilation Tendency Analysis of McGinness Hills Geothermal AreaSource

Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = T / on (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (o1-on) / (o1-o3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the McGinness Hills geothermal field was calculated based on the faults mapped McGinness Hills area (Siler 2012, unpublished). The McGinness Hills area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the McGinness area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60 degrees dipping fault segments have the highest tendency to slip. The McGinness Hills geothermal system is characterized by a left-step in a north-northeast striking west-dipping fault system within a north northeast striking accommodation zone. As such, the normal faults that define these two structures are well oriented for both slip and dilation, including the west dipping faults that are exploited for both production and injection. Interestingly, although there is pressure communication between production and injection wells at McGinness Hills (B. Delwiche, personal comm.) the northwest striking fault, which creates hard linkage between the production and injection locations, is poorly oriented for both slip and dilation and therefore unlikely to host permeability. NOTE: 'o' is used in this description to represent lowercase sigma.

0
No licence known
Tags:
ArcGISDilation TendencyGISMcGinness Hills Geothermal AreaSlip Tendencyambient stressdatafaultingfaultsfluid flow conduitsgeospatial datageothermalshape fileshapefilestress
Formats:
ZIP
National Renewable Energy Laboratory (NREL)about 1 year ago
Slip and Dilation Tendency Analysis of Neal Hot Springs Geothermal AreaSource

Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = T / on (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (o1-on) / (o1-o3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Based on inversion of fault kinematic data, Edwards (2013) interpreted that two discrete stress orientations are preserved at Neal Hot Springs. An older episode of east-west directed extension and a younger episode of southwest-northeast directed sinistral, oblique -normal extension. This interpretation is consistent with the evolution of Cenozoic tectonics in the region (Edwards, 2013). As such we applied a southwest-northeast (060) directed normal faulting stress regime, consistent with the younger extensional episode, to the Neal Hot Springs faults. Under these stress conditions northeast striking steeply dipping fault segments have the highest tendency to dilate and northeast striking 60 degrees dipping fault segments have the highest tendency to slip. Under these stress conditions, both the Neal Fault and Sugarloaf Butte faults area well-oriented for both slip and dilation and thus for fracture permeability. In addition, several subsidiary faults on the eastern side and within the step-over between the Neal fault and Sugarloaf Butte fault are well oriented for slip and dilation as well. NOTE: 'o' is used in this description to represent lowercase sigma.

0
No licence known
Tags:
ArcGISDilation TendencyGISNeal Hot SpringsNeal Hot Springs Geothermal AreaSlip Tendencyambient stressdatafaultingfaultsfluid flow conduitsgeospatial datageothermalshape fileshapefilestress
Formats:
ZIP
National Renewable Energy Laboratory (NREL)about 1 year ago
Slip and Dilation Tendency Analysis of the Patua Geothermal AreaSource

Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip or to dilate provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database as well as local stress information. Slip and dilation tendency analysis for the Patua geothermal system was calculated based on faults mapped in the Hazen Quadrangle (Faulds et al., 2011). Patua lies near the margin between the Basin and Range province, which is characterized by west-northwest directed extension and the Walker Lane province, characterized by west-northwest directed dextral shear. As such, the Patua area likely has been affected by tectonic stress associated with either or both of stress regimes over geologic time. In order to characterize this stress variation we calculated slip tendency at Patua for both normal faulting and strike slip faulting stress regimes. Dilation tendency results for a strike-slip faulting stress regime and for a normal faulting stress regime are virtually identical, so we present one result for dilation tendency applicable to both strike-slip and normal faulting stress conditions along with slip tendency for both a normal faulting and a strike-slip faulting stress regime. Under these stress conditions, north-northeast striking steeply dipping fault segments have the highest dilation tendency. Under the strike-slip faulting stress regime, north-northwest and east-northeast striking, steeply dipping fault have the highest slip tendency, while under normal faulting conditions north northeast striking, 60 degrees dipping faults have the highest slip tendency.

0
No licence known
Tags:
ArcGISDilation Tendency AnalysisGISPatuaPatua Geothermal AreaSlip Tendency Analysisambient stressdatafaultingfaultsfluid dlow conduitsgeospatial datageothermalshape fileshapefilestress
Formats:
ZIP
National Renewable Energy Laboratory (NREL)about 1 year ago
Slip and Dilation Tendency Analysis of the Salt Wells Geothermal AreaSource

Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = T / on (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (o1-on) / (o1-o3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Salt Wells geothermal field was calculated based on the faults mapped in the Bunejug Mountains quadrangle (Hinz et al., 2011). The Salt Wells area lies in the Basin and Range Province (N. Hinz personal comm.) As such we applied a normal faulting stress regime to the Salt Wells area faults, with a minimum horizontal stress direction oriented 105, based on inspection of local and regional stress determinations. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60 degrees dipping fault segments have the highest tendency to slip. Several such faults intersect in high density in the core of the accommodation zone in the Bunejug Mountains and local to the Salt Wells geothermal .

0
No licence known
Tags:
ArcGISDilation TendencyDilation Tendency AnalysisGISSalt Wells Geothermal AreaSlip TendencySlip Tendency Analysisambient stressdatafaultingfaultsfluid flow conduitsgeospatial datageothermalsalt wellsshape fileshapefilestress
Formats:
ZIP
National Renewable Energy Laboratory (NREL)about 1 year ago
Slip and Dilation Tendency Analysis of the San Emidio Geothermal AreaSource

Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = T / on (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (o1-on) / (o1-o3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the San Emidio geothermal field was calculated based on the faults mapped Tuscarora area (Rhodes, 2011). The San Emidio area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the San Emidio area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. This is consistent with the shmin determined through inversion of fault data by Rhodes (2011). Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60 degrees dipping fault segments have the highest tendency to slip. Interesting, the San Emidio geothermal field lies in an area of primarily north striking faults, which have moderate dilation tendency and moderate to low slip tendency. NOTE: 'o' is used in this description to represent lowercase sigma.

0
No licence known
Tags:
ArcGISDilation Tendency AnalysisGISSan EmidioSan Emidio Geothermal AreaSlip Tendency Analysisambient stressdatadilation tendencyfaultingfaultsfluid flow conduitsgeospatial datageothermalshape fileshapefileslip tendencystress
Formats:
ZIP
National Renewable Energy Laboratory (NREL)about 1 year ago
Slip and Dilation Tendency Analysis of the Tuscarora Geothermal AreaSource

Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = T / on (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (o1-on) / (o1-o3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Tuscarora geothermal field was calculated based on the faults mapped Tuscarora area (Dering, 2013). The Tuscarora area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the Tuscarora area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60 degrees dipping fault segments have the highest tendency to slip. Tuscarora is defined by a left-step in a major north- to-north northeast striking, west-dipping range-bounding normal fault system. Faults within the broad step define an anticlinal accommodation zone wherein east-dipping faults mainly occupy western half of the accommodation zone and west-dipping faults lie in the eastern half of the accommodation zone. The geothermal system resides in the axial part of the accommodation, straddling the two fault dip domains. Within the axial part of the accommodation zone several west-dipping, north northeast-striking faults are well oriented for both slip and dilation, including fault strands that are exploited for both production and injection for the Tuscarora geothermal power plant. NOTE: 'o' is used in this description to represent lowercase sigma.

0
No licence known
Tags:
ArcGISDilation Tendency AnalysisGISSlip Tendency AnalysisSlip tendencyTuscaroraTuscarora Geothermal Areaambient stressdatadilation tendencyfaultingfaultsfluid flow conduitsgeospatial datageothermalshape fileshapefilestress
Formats:
ZIP
National Renewable Energy Laboratory (NREL)about 1 year ago
Snake River Plain Geothermal Play Fairway Analysis Heat, Permeability, and Seal CRS Map Raster FilesSource

Snake River Plain Play Fairway Analysis - Phase 1 CRS Raster Files. This dataset contains raster files created in ArcGIS. These raster images depict Common Risk Segment (CRS) maps for HEAT, PERMEABILITY, AND SEAL, as well as selected maps of Evidence Layers. These evidence layers consist of either Bayesian krige functions or kernel density functions, and include: (1) HEAT: Heat flow (Bayesian krige map), Heat flow standard error on the krige function (data confidence), volcanic vent distribution as function of age and size, groundwater temperature (equivalue interval and natural breaks bins), and groundwater T standard error. (2) PERMEABILTY: Fault and lineament maps, both as mapped and as kernel density functions, processed for both dilational tendency (TD) and slip tendency (ST), along with data confidence maps for each data type. Data types include mapped surface faults from USGS and Idaho Geological Survey data bases, as well as unpublished mapping; lineations derived from maximum gradients in magnetic, deep gravity, and intermediate depth gravity anomalies. (3) SEAL: Seal maps based on presence and thickness of lacustrine sediments and base of SRP aquifer. Raster size is 2 km. All files generated in ArcGIS.

0
No licence known
Tags:
IdahoPlay Fairway AnalysisSnake River Plainaquiferdilation tendancyfaultingfaultsgeothermalgravitygroundwater temperatureheatheat sourcemagneticpermeabilitypfaresource assessmentsealsedimentsite characterizationslip tendancysrpvent
Formats:
PNG
National Renewable Energy Laboratory (NREL)about 1 year ago
Structural Data for the Columbus Salt Marsh Geothermal Area - GIS DataSource

Shapefiles and spreadsheets of structural data, including attitudes of faults and strata and slip orientations of faults. - Detailed geologic mapping of ~30 km2 was completed in the vicinity of the Columbus Marsh geothermal field to obtain critical structural data that would elucidate the structural controls of this field. - Documenting E- to ENE-striking left lateral faults and N- to NNE-striking normal faults. - Some faults cut Quaternary basalts. - This field appears to occupy a displacement transfer zone near the eastern end of a system of left-lateral faults. ENE-striking sinistral faults diffuse into a system of N- to NNE-striking normal faults within the displacement transfer zone. - Columbus Marsh therefore corresponds to an area of enhanced extension and contains a nexus of fault intersections, both conducive for geothermal activity.

0
No licence known
Tags:
ArcGISColumbus MarshColumbus Salt Marsh Geothermal AreaGISGIS dataStructural ControlsStructural Datafaultingfaultsgeologic mapgeologygeospatial datageothermalshape fileshapefileshapefilesslipslip orientationstratastratigraphystructural geology
Formats:
ZIP
National Renewable Energy Laboratory (NREL)about 1 year ago
Structural and Tectonic Controls of Geothermal Activity in the Basin and Range ProvinceSource

We are conducting an inventory of structural settings of geothermal systems (>400 total) in the extensional to transtensional Great Basin region of the western USA. A system of NW-striking dextral faults known as the Walker Lane accommodates ~20% of the North American-Pacific plate motion in the western Great Basin and is intimately linked to N- to NNE-striking normal fault systems throughout the region. Overall, geothermal systems are concentrated in areas with the highest strain rates within or proximal to the eastern and western margins of the Great Basin, with the highest temperature systems clustering in transtensional areas of highest strain rate in the northwestern Great Basin. Of the 250+ geothermal fields catalogued, step-overs or relay ramps in normal fault zones serve as the most favorable setting, hosting ~32% of the systems. Such areas have multiple, overlapping fault strands, increased fracture density, and thus enhanced permeability. Other common settings include a) intersections between normal faults and strike-slip or oblique-slip faults (22%), where multiple minor faults connect major structures and fluids can flow readily through highly fractured, dilational quadrants, and b) normal fault terminations or tip-lines (22%), where horse-tailing generates closely-spaced faults and increased permeability. Other settings include accommodation zones (i.e., belts of intermeshing, oppositely dipping normal faults; 8%), major normal faults (6%), displacement transfer zones (5%), and pull-aparts in strike-slip faults (4%). In addition, Quaternary faults lie within or near most systems (e.g., Bell and Ramelli, 2007). The relative scarcity of geothermal systems along displacement-maxima of major normal faults may be due to reduced permeability in thick zones of clay gouge and periodic release of stress in major earthquakes. Step-overs, terminations, intersections, and accommodation zones correspond to long-term, critically stressed areas, where fluid pathways are more likely to remain open in networks of closely-spaced, breccia-dominated fractures.

0
No licence known
Tags:
Basin and RangeGreat BasinNevadaStrain RatesStructural ControlsWalker LaneWestern USAcataloguefaultingfaultsgeothermalstructural geologystructural settingtectonics
Formats:
PDF
National Renewable Energy Laboratory (NREL)about 1 year ago