Open Net Zero logo

Filters

Formats:
Select...
Licenses:
Select...
Organizations:
Select...
Tags:
Select...
Shared:
Sensitivities:
Datasets
L o a d i n g
Farming Systems Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network in Morris, Minnesota

Farming Systems Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network in Morris, Minnesota Tillage is decreasing globally due to recognized benefits of fuel savings and improved soil health in the absence of disturbance. However, a perceived inability to control weeds effectively and economically hinders no-till adoption in organic production systems in the Upper Midwest, USA. A strip-tillage (ST) strategy was explored as an intermediate approach to reducing fuel use and soil disturbance, and still controlling weeds. An 8-year comparison was made between two tillage approaches, one primarily using ST the other using a combination of conventional plow, disk and chisel tillage [conventional tillage (CT)]. Additionally, two rotation schemes were explored within each tillage system: a 2-year rotation (2y) of corn (Zea mays L.), and soybean (Glycine max [L.] Merr.) with a winter rye (Secale cereale L.) cover crop; and a 4-year rotation (4y) of corn, soybean, spring wheat (Triticum aestivum L.) underseeded with alfalfa (Medicago sativa L.), and a second year of alfalfa. These treatments resulted in comparison of four main management systems CT-2y, CT-4y, ST-2y and ST-4y, which also were managed under fertilized and non-fertilized conditions. Yields, whole system productivity (evaluated with potential gross returns), and weed seed densities (first 4 years) were measured. Across years, yields of corn, soybean and wheat were greater by 34% or more under CT than ST but alfalfa yields were the same. Within tillage strategies, corn yields were the same in 2y and 4y rotations, but soybean yields, only under ST, were 29% lower in the fertilized 4y than 2 yr rotation. In the ST-4y system yields of corn and soybean were the same in fertilized and non-fertilized treatments. Over the entire rotation, system productivity was highest in the fertilized CT-2y system, but the same among fertilized ST-4y, and non-fertilized ST-2y, ST-4y, and CT-4y systems. Over the first 4 years, total weed seed density increased comparatively more under ST than CT, and was negatively correlated to corn yields in fertilized CT systems and soybean yields in the fertilized ST-2y system. These results indicated ST compromised productivity, in part due to insufficient weed control, but also due to reduced nutrient availability. ST and diverse rotations may yet be viable options given that overall productivity of fertilized ST-2y and CT-4y systems was within 70% of that in the fertilized CT-2y system. Closing the yield gap between ST and CT would benefit from future research focused on organic weed and nutrient management, particularly for corn.

0
No licence known
Tags:
Amaranthus retroflexusAmbrosia artemisiifoliaChenopodium albumEchinochloa crus-galliEconomic Research ServiceEnvironmentGRACEnetHydraMinnesotaMorris MN FSNP211NP212Natural Resources Conservation ServiceNatural Resources and GenomicsOxalisSetaria viridisSinapis arvensisSoilSoil TemperatureSwineairair temperaturealfalfaapplication ratebeveragesbiomassbiomass productioncalcium chloridecarboncarbon dioxidechiselingclaycleaningcollarscombustioncomputed tomographycomputer softwareconventional tillagecorncover cropscrop rotationcropscuttingdairy manurediscingdiurnal variationemissionsequationsexperimental designfarmingfarming systemsfertilizer applicationfertilizersflame ionizationforagefreezingglacial tillglobal warminggrain yieldgreenhouse gas emissionsgreenhouse gasesgrowing seasonharrowingharvestingheadheat sumshoeingicelakesmagnesiummanagement systemsmanual weed controlmarket pricesmature plantsmethanemixed croppingmolesmonitoringmowingnitrogen fixationnitrous oxideno-tillagenutrient contenton-farm researchorganic foodspHpasturespesticidespig manureplantingplowsregression analysisresidual effectsrootsrow spacingryesalesseed collectingseedbedsseedsshootssnowsoil depthsoil texturesorrelsoybeansspringspring wheatstarter fertilizersstatistical modelsstrip tillagetemperaturetillageweed controlweedswheatwinter
Formats:
HTML
United States Department of Agriculture10 months ago
Gas Flux from Band Application

Gas Flux from Band Application (GF-Band) is an MS Excel spreadsheet tool that calculates the effective gas flux from soil of a multiple-band area to which manure or fertilizer has been applied in bands. One spreadsheet is for circular gas flux chambers and another is for rectangular chambers. Greenhouse gases are emitted following application of manure and nitrogen‐containing fertilizers to soil. Manure and fertilizers are often applied in subsurface bands in the soil, or in bands on the soil surface. This article presents a method that has been developed for calculating the effective gas flux for a multiple‐band area to which manure or fertilizer has been applied in bands. The method has been developed for circular and rectangular flux chambers. In analyzing the method, a combination of CO2 gas fluxes from a field experiment that gave a relatively low whole‐plot effective flux and a combination that gave a relatively high whole‐plot effective flux were used. For the lower‐end flux situation, when the dimension of the flux chamber in the direction perpendicular to the band is considerably less than the band spacing, if the flux in a chamber that is centered on a band is assumed to be the whole‐plot effective flux, then this assumption would overestimate the actual whole‐plot effective flux by a considerable amount. The error of this type of assumption is reduced for the higher‐end flux situation, regardless of flux chamber dimensions, and is reduced when the lower‐end flux situation occurs and the dimension of the flux chamber in the direction perpendicular to the band is intermediate to nearly as large as the band spacing. The method in useful in calculating effective gas fluxes for whole plots to which manure or fertilizer has been band‐applied.

0
No licence known
Tags:
NP212carbon dioxideemissionsfertilizersgreenhouse gasesmanures
Formats:
HTML
United States Department of Agriculture10 months ago
NVND Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network in Sidney, Montana

NVND Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network in Sidney, Montana Management practices, such as irrigation, tillage, cropping system, and N fertilization, may influence soil greenhouse gas (GHG) emissions. We quantified the effects of irrigation, tillage, crop rotation, and N fertilization on soil CO2, N2O, and CH4 emissions from March to November, 2008 to 2011 in a Lihen sandy loam in western North Dakota. Treatments were two irrigation practices (irrigated and non-irrigated) and five cropping systems (conventional-tilled malt barley [Hordeum vulgaris L.] with N fertilizer [CTBFN], conventional-tilled malt barley with no N fertilizer [CTBON], no-tilled malt barley-pea [Pisum sativum L.] with N fertilizer [NTB-PN], no-tilled malt barley with N fertilizer [NTBFN], and no-tilled malt barley with no N fertilizer [NTBON]). The GHG fluxes varied with date of sampling while peaking immediately after precipitation, irrigation, and/or N fertilization events during increased soil temperature. Both CO2 and N2O fluxes were greater in CTBFN under the irrigated condition but CH4 uptake was greater in NTB-PN under the non-irrigated condition than in other treatments. While tillage and N fertilization increased CO2 and N2O fluxes by 8 to 30%, N fertilization and monocropping reduced CH4 uptake by 39 to 40%. The NTB-PN, regardless of irrigation, might mitigate GHG emissions by reducing CO2 and N2O emissions and increasing CH4 uptake relative to other treatments. To account for global warming potential for such a practice, information on productions associated with CO2 emissions along with N2O and CH4 fluxes are needed.

0
No licence known
Tags:
Climate ChangeEnvironmentNP211NP212SoilWaterbiomasscarbon dioxidecropsfarmingfertilizersgrainsgreenhouse gas emissionsherbicidesirrigationmethanenitrogentemperaturetillage
Formats:
HTML
United States Department of Agriculture10 months ago
Organic Amendment Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network and Nutrient Use and Outcome Network in Fort Collins, Colorado

Organic Amendment Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network and Nutrient Use and Outcome Network in Fort Collins, Colorado Dairy manure is commonly used in place of inorganic N fertilizers but the impacts on trace gas flux, yields and soil N are not well understood in the semiarid western US. CO2, N2O, and CH4 were monitored using surface chamnbers from 5 N treatments to determine their effect on greenhouse gas emissions from a tilled clay loam soil under irrigated, continuous corn production for a 3 yr. time period. Treatments included (i) partially composed dairy manure (DM) (412 kg N ha -1), (ii) DM + AgrotainPlus (DM + AP), (iii) enhanced efficiency N fertilizer (SuperU, or SUPRU) (179 kg N ha-1), (iv) Urea (179 kg N ha-1), and (v) check. These results highlight the importance of best-managemnet practices such as immediate irrigation after N application and use of urease and nitrification inhibitors to minimize N losses.

0
No licence known
Tags:
EnvironmentNP211NP212Soilcarbon dioxidecornfarmingfertilizersgrain yieldgreenhouse gas emissionsirrigationmethanenitrogennitrous oxide
Formats:
ZIP
United States Department of Agriculture10 months ago