Open Net Zero logo

Filters

Formats:
Select...
Licenses:
Select...
Organizations:
Select...
Tags:
Select...
Shared:
Sensitivities:
Datasets
L o a d i n g
EGS Collab - 4850L Downhole Camera Surveys During InjectionSource

This package includes data and footage from two rounds of downhole camera surveys performed at the Sanford Underground Research Facility (SURF) on the 4850 level. The exercise was performed once on 25 May 2018 and once on 21 December 2018. On May 25th, the first round was done during fluid injection at the 164-ft stimulation zone in the injection well (E1-I). On December 21st, the second round was carried out during fluid injection at the 142-ft stimulation zone. Prior to the injections, downhole instrumentation was removed from the production well (E1-P) to allow room for the downhole camera system. The water within E1-P was then lifted out by the application of air pressure and the downhole camera system was conveyed into the production well. Finally, the water was injected into E1-I and the camera was used to scan for jetting points, or fluid entry, in E1-P. There is a survey description in this package that further describes the procedure of the survey and the overall results. Additionally, there is a detailed analysis of the surveys in the form of a PowerPoint, which includes animations/visualizations from the camera footage, presents interpretations in detail, and provides some general conclusions. Three animations, along with the two video segments that show the jetting into E1-P, are also provided. The video footage was collected using a GeoVISION Dual-Scan Micro Video Camera, the specs of which are also included in this package as a resource.

0
No licence known
Tags:
BoreholeDownhole CameraDual-Scan Micro Video CameraE1-PEGSEGS CollabGeoVISIONSURFSanford Underground Research FacilityStressdatadepthdrillingenergyexperimentflowfoliationfracturefracturinggeothermalhydraulicinjectioninjection rateinjection testjetsjetting pointpressureproduction wellstimulationwell datawellbore
Formats:
MP4mpgGIFPDFPPTXHTML
National Renewable Energy Laboratory (NREL)about 1 year ago
EGS Collab Experiment 1: Core LogsSource

Core logs from the EGS Collab project Experiment 1 for the stimulation (Injection) well (E1-I), the Production well (E1-P), and monitoring wells (E1-OT, E1-OB, E1-PST, E1-PSB, E1-PDT, and E1-PDB) on the 4850 Level of SURF (the Sanford Underground Research Facility), single PDF file, 5-ft run intervals. In the monitoring well IDs, "O" indicates that the well is orthogonal to the anticipated fracture plane, "P" indicates that the well is parallel to the anticipated fracture plane, "S" indicates a shallow well, "D" indicates a deep well, "T" refers to top, and "B" refers to bottom. Logs include: experiment number; borehole ID; depth interval; run number; final packed core box number; scribe line (yes/no; red-on-right convention); logging dates; logger initials; as well as sketches of core foliation, folding, and fracturing with additional details and notes on other features of interest.

0
No licence known
Tags:
CollabE1-IE1-OBE1-OTE1-PE1-PDBE1-PDTE1-PSBE1-PSTEGSExperiment 1HomestakePoormanSIGMA-VSURFboreholecoreenergyfeaturesfoldfoldingfoliationfracturefracturesfracturinggeothermalhydraulicinjectioninjection wellloglogsmonitoringphotossamplestimulationwell
Formats:
PDFZIP
National Renewable Energy Laboratory (NREL)about 1 year ago
EGS Collab Experiment 1: SIMFIP Notch-164 GRL PaperSource

Characterizing the stimulation mode of a fracture is critical to assess the hydraulic efficiency and the seismic risk related to deep fluid manipulations. We have monitored the three-dimensional displacements of a fluid-driven fracture during water injections in a borehole at ~1.5 km depth in the crystalline rock of the Sanford Underground Research Facility (USA). The fracture initiates at 61% of the minimum horizontal stress by micro-shearing of the borehole on a foliation plane. As the fluid pressure increases further, borehole axial and radial displacements increase with injection time highlighting the opening and sliding of a new hydrofracture growing ~10 m away from the borehole, in accordance with the ambient normal stress regime and in alignment with the microseismicity. Our study reveals how fluid-driven fracture stimulation can be facilitated by a mixed-mode process controlled by the complex hydromechanical evolution of the growing fracture. The data presented in this submission refer to the SIMFIP measurements and analyses of the stimulation tests conducted on the 164 ft (50 m) notch of the Sanford Underground Research Facility (SURF), during the EGS-Collab test 1. In addition to the datafiles, there is the draft of a manuscript submitted to Geophysical Research Letters (GRL).

0
No licence known
Tags:
EGSEGS CollabNew borehole instrumentSIMFIPSURFSanford Underground Research Facilityanisotropyboreholedisplacementenergyexperimentflow ratefoliationfracturegeophysicsgeothermalhydraulichydraulic conductivityhydrofractureinjection testmicro-shearingnucleateseismicseismicityshearshear displacementstimulationstresswellbore
Formats:
TXTPDFCSV
National Renewable Energy Laboratory (NREL)about 1 year ago
EGS Collab Experiment 2: Core LogsSource

Core logs and photos from the EGS Collab project Experiment 2 for the Top Vertical well (TV4100) and the Top Horizontal well (TV 4100) on the 4100 Level of SURF (the Sanford Underground Research Facility). The core logs are stored in a single PDF file with 5-ft run intervals. In the monitoring well IDs, "O" indicates that the well is orthogonal to the anticipated fracture plane, "T" refers to top, and "H" refers to horizontal. A core log CT scan for TV4100 and a layout image of the 4100 wells are included as well. Logs include: experiment number; borehole ID; depth interval; run number; final packed core box number; scribe line (yes/no; red-on-right convention); logging dates; logger initials; as well as sketches of core foliation, folding, and fracturing with additional details and notes on other features of interest. Shift reports include: date, location, personnel, summary of site activity, and field notes.

0
No licence known
Tags:
EGSEGS CollabSURFSanford Underground Research Facilitycorecore logenergyexperimentfoldingfoliationfracturinggeothermalhydraulicloggingstimulationwell data
Formats:
PDFPNGZIP
National Renewable Energy Laboratory (NREL)about 1 year ago