Open Net Zero logo

Filters

Formats:
Select...
Licenses:
Select...
Organizations:
Select...
Tags:
Select...
Shared:
Sensitivities:
Datasets
L o a d i n g
Carbon Crops Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network and Resilient Economic Agricultural Practices in Morris, Minnesota

Carbon Crops Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network and Resilient Economic Agricultural Practices in Morris, Minnesota The overall goal of the Carbon Crop study, established in 2000, was to assess strategies for increasing soil C sequestration including converting to no till systems and including perennial grasses (e.g., switchgrass and big bluestem) Overall, the goal of the study has remained constant, although individual treatments were changed after an incremental soil sampling, in response to new hypotheses and questions. Soil sampling is conducted as treatment changes are implemented. In 2012, two of the perennial grass systems (spring harvest of Switchgrass and Big Bluestem) were changed to corn/soybean rotations, beginning with a soybean entry point, to determine if the SOC accrued under the perennial system was lost by converting to a short annual rotation managed without tillage. The second change made was to compare the productivity between recent and traditional switchgrass cultivars. The final change was conversion of autumn harvest of Big Bluestem treatment replaced with an annual biomass crop – Sorghum-Sudan grass. Soil samples were taken to 1 m in 2000, 2006, 2011, and 2016. Nitrous oxide and carbon dioxide fluxes from the soil were measured from June 2009 through March 2012.

0
No licence known
Tags:
Andropogon gerardiiEnvironmentGRACEnetMorris MN CCNP211NP212Natural Resources and GenomicsPanicum virgatumREAPSoilSorghum bicolor subsp. drummondiiautumncarboncarbon dioxidecarbon nitrogen ratiocarbon sequestrationclaycultivarsenergy cropsexperimental designfarminggrassesgrowing seasonharvestinglakesnitrous oxideno-tillageon-farm researchoutreachpHperennialssnowsoil conservationsoil organic carbonsoil samplingsoybeansspringtemperaturetillagewinter
Formats:
HTML
United States Department of Agriculture10 months ago
Grass-Cast Database - Data on aboveground net primary productivity (ANPP), climate data, NDVI, and cattle weight gain for Western U.S. rangelands

Grass-Cast: Experimental Grassland Productivity Forecast for the Great Plains Grass-Cast uses almost 40 years of historical data on weather and vegetation growth in order to project grassland productivity in the Western U.S. More details on the projection model and method can be found at https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecs2.3280. Every spring, ranchers in the drought‐prone U.S. Great Plains face the same difficult challenge—trying to estimate how much forage will be available for livestock to graze during the upcoming summer grazing season. To reduce this uncertainty in predicting forage availability, we developed an innovative new grassland productivity forecast system, named Grass‐Cast, to provide science‐informed estimates of growing season aboveground net primary production (ANPP). Grass‐Cast uses over 30 yr of historical data including weather and the satellite‐derived normalized vegetation difference index (NDVI)—combined with ecosystem modeling and seasonal precipitation forecasts—to predict if rangelands in individual counties are likely to produce below‐normal, near‐normal, or above‐normal amounts of grass biomass (lbs/ac). Grass‐Cast also provides a view of rangeland productivity in the broader region, to assist in larger‐scale decision‐making—such as where forage resources for grazing might be more plentiful if a rancher’s own region is at risk of drought. Grass‐Cast is updated approximately every two weeks from April through July. Each Grass‐Cast forecast provides three scenarios of ANPP for the upcoming growing season based on different precipitation outlooks. Near real‐time 8‐d NDVI can be used to supplement Grass‐Cast in predicting cumulative growing season NDVI and ANPP starting in mid‐April for the Southern Great Plains and mid‐May to early June for the Central and Northern Great Plains. Here, we present the scientific basis and methods for Grass‐Cast along with the county‐level production forecasts from 2017 and 2018 for ten states in the U.S. Great Plains. The correlation between early growing season forecasts and the end‐of‐growing season ANPP estimate is >50% by late May or early June. In a retrospective evaluation, we compared Grass‐Cast end‐of‐growing season ANPP results to an independent dataset and found that the two agreed 69% of the time over a 20‐yr period. Although some predictive tools exist for forecasting upcoming growing season conditions, none predict actual productivity for the entire Great Plains. The Grass‐Cast system could be adapted to predict grassland ANPP outside of the Great Plains or to predict perennial biofuel grass production. This new experimental grassland forecast is the result of a collaboration between Colorado State University, U.S. Department of Agriculture (USDA), National Drought Mitigation Center, and the University of Arizona. Funding for this project was provided by the USDA Natural Resources Conservation Service (NRCS), USDA Agricultural Research Service (ARS), and the National Drought Mitigation Center. Watch for updates on the Grass-Cast website or on Twitter (@PeckAgEc). Project Contact: Dannele Peck, Director of the USDA Northern Plains Climate Hub, at dannele.peck@ars.usda.gov or 970-744-9043.

0
No licence known
Tags:
Grass-CastNDVIRangelandscattlecattle weight gaingrassesnet primary production
Formats:
HTMLZIPXLSX
United States Department of Agriculture10 months ago
Grass-Cast Database - Data on aboveground net primary productivity (ANPP), climate data, NDVI, and cattle weight gain for Western U.S. rangelands

Grass-Cast: Experimental Grassland Productivity Forecast for the Great Plains Grass-Cast uses almost 40 years of historical data on weather and vegetation growth in order to project grassland productivity in the Western U.S. More details on the projection model and method can be found at https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecs2.3280. Every spring, ranchers in the drought‐prone U.S. Great Plains face the same difficult challenge—trying to estimate how much forage will be available for livestock to graze during the upcoming summer grazing season. To reduce this uncertainty in predicting forage availability, we developed an innovative new grassland productivity forecast system, named Grass‐Cast, to provide science‐informed estimates of growing season aboveground net primary production (ANPP). Grass‐Cast uses over 30 yr of historical data including weather and the satellite‐derived normalized vegetation difference index (NDVI)—combined with ecosystem modeling and seasonal precipitation forecasts—to predict if rangelands in individual counties are likely to produce below‐normal, near‐normal, or above‐normal amounts of grass biomass (lbs/ac). Grass‐Cast also provides a view of rangeland productivity in the broader region, to assist in larger‐scale decision‐making—such as where forage resources for grazing might be more plentiful if a rancher’s own region is at risk of drought. Grass‐Cast is updated approximately every two weeks from April through July. Each Grass‐Cast forecast provides three scenarios of ANPP for the upcoming growing season based on different precipitation outlooks. Near real‐time 8‐d NDVI can be used to supplement Grass‐Cast in predicting cumulative growing season NDVI and ANPP starting in mid‐April for the Southern Great Plains and mid‐May to early June for the Central and Northern Great Plains. Here, we present the scientific basis and methods for Grass‐Cast along with the county‐level production forecasts from 2017 and 2018 for ten states in the U.S. Great Plains. The correlation between early growing season forecasts and the end‐of‐growing season ANPP estimate is >50% by late May or early June. In a retrospective evaluation, we compared Grass‐Cast end‐of‐growing season ANPP results to an independent dataset and found that the two agreed 69% of the time over a 20‐yr period. Although some predictive tools exist for forecasting upcoming growing season conditions, none predict actual productivity for the entire Great Plains. The Grass‐Cast system could be adapted to predict grassland ANPP outside of the Great Plains or to predict perennial biofuel grass production. This new experimental grassland forecast is the result of a collaboration between Colorado State University, U.S. Department of Agriculture (USDA), National Drought Mitigation Center, and the University of Arizona. Funding for this project was provided by the USDA Natural Resources Conservation Service (NRCS), USDA Agricultural Research Service (ARS), and the National Drought Mitigation Center. Watch for updates on the Grass-Cast website or on Twitter (@PeckAgEc). Project Contact: Dannele Peck, Director of the USDA Northern Plains Climate Hub, at dannele.peck@ars.usda.gov or 970-744-9043. This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: • https://data.nal.usda.gov/system/files/Grass-Cast_AgDataCommons_download.html • https://data.nal.usda.gov/system/files/R_access_script.zip • https://data.nal.usda.gov/system/files/ANPP.xlsx • https://data.nal.usda.gov/system/files/Cattle_weight_gains.xlsx • https://data.nal.usda.gov/system/files/NDVI.xlsx • https://data.nal.usda.gov/system/files/NDVI_raw.xlsx • https://data.nal.usda.gov/system/files/Grass-Cast_sitelist.xlsx For complete information, please visit https://data.gov.

0
No licence known
Tags:
Grass-CastNDVIRangelandscattlecattle weight gaingrassesnet primary production
Formats:
No formats found
United States Department of Agriculture10 months ago
TPAC Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network in West Lafayette, Indiana

TPAC Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network in West Lafayette, Indiana Recent efforts have attempted to establish emission estimates for greenhouse gases (GHG) from agricultural soils in the United States. This research project was conducted to assess the influence of cropping system management on non-carbon dioxide (non-CO2) GHG emissions from an eastern cornbelt alfisol. Corn (Zea mays L.) and soybean (Glycine max (L.) Merr.) rotation plots were established, as were plots in continuous management of native grasses or Sorghum/Sudan grass. GHG fluxes were monitored throughout each growing season from 2004 through 2007. Fluxes of N2O were significantly correlated with soil temperature (P < 0.001), and thus a Q10 correction was made (3.48 for N2O). Nitrous oxide emissions from corn were lowest from the precision tillage treatment (2.4 kg N ha-1 yr-1), significantly lower than the conventional tillage (4.9 kg N ha-1 yr-1) or cover crop corn treatments (5.0 kg N ha-1 yr-1). Corn-soybean and biomass-based cropping systems resulted in significantly greater N2O emissions than native grasses. There was a positive correlation between N fertilization rate and N2O emissions when comparing all treatments in this study. These soils were typically a sink for atmospheric CH4 for these cropping systems, and thus N2O is the primary non-CO2 GHG of concern. When evaluating the entire cropping system, native grasses resulted in the lowest N2O emissions, while corn-soybean rotation planted with precision tillage resulted in similar N2O emissions as bare soil and were significantly lower than emissions from the other cropping systems assessed.

0
No licence known
Tags:
EnvironmentNP211NP212Soil TemperatureWeatherair temperaturecarbon dioxidecornfarminggrassesgreenhouse gasmethanenitrous oxidesoil watersoybeanstillage
Formats:
HTML
United States Department of Agriculture10 months ago