Open Net Zero logo

Filters

Formats:
Select...
Licenses:
Select...
Organizations:
Select...
Tags:
Select...
Shared:
Sensitivities:
Datasets
L o a d i n g
Farming Systems Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network in Morris, Minnesota

Farming Systems Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network in Morris, Minnesota Tillage is decreasing globally due to recognized benefits of fuel savings and improved soil health in the absence of disturbance. However, a perceived inability to control weeds effectively and economically hinders no-till adoption in organic production systems in the Upper Midwest, USA. A strip-tillage (ST) strategy was explored as an intermediate approach to reducing fuel use and soil disturbance, and still controlling weeds. An 8-year comparison was made between two tillage approaches, one primarily using ST the other using a combination of conventional plow, disk and chisel tillage [conventional tillage (CT)]. Additionally, two rotation schemes were explored within each tillage system: a 2-year rotation (2y) of corn (Zea mays L.), and soybean (Glycine max [L.] Merr.) with a winter rye (Secale cereale L.) cover crop; and a 4-year rotation (4y) of corn, soybean, spring wheat (Triticum aestivum L.) underseeded with alfalfa (Medicago sativa L.), and a second year of alfalfa. These treatments resulted in comparison of four main management systems CT-2y, CT-4y, ST-2y and ST-4y, which also were managed under fertilized and non-fertilized conditions. Yields, whole system productivity (evaluated with potential gross returns), and weed seed densities (first 4 years) were measured. Across years, yields of corn, soybean and wheat were greater by 34% or more under CT than ST but alfalfa yields were the same. Within tillage strategies, corn yields were the same in 2y and 4y rotations, but soybean yields, only under ST, were 29% lower in the fertilized 4y than 2 yr rotation. In the ST-4y system yields of corn and soybean were the same in fertilized and non-fertilized treatments. Over the entire rotation, system productivity was highest in the fertilized CT-2y system, but the same among fertilized ST-4y, and non-fertilized ST-2y, ST-4y, and CT-4y systems. Over the first 4 years, total weed seed density increased comparatively more under ST than CT, and was negatively correlated to corn yields in fertilized CT systems and soybean yields in the fertilized ST-2y system. These results indicated ST compromised productivity, in part due to insufficient weed control, but also due to reduced nutrient availability. ST and diverse rotations may yet be viable options given that overall productivity of fertilized ST-2y and CT-4y systems was within 70% of that in the fertilized CT-2y system. Closing the yield gap between ST and CT would benefit from future research focused on organic weed and nutrient management, particularly for corn.

0
No licence known
Tags:
Amaranthus retroflexusAmbrosia artemisiifoliaChenopodium albumEchinochloa crus-galliEconomic Research ServiceEnvironmentGRACEnetHydraMinnesotaMorris MN FSNP211NP212Natural Resources Conservation ServiceNatural Resources and GenomicsOxalisSetaria viridisSinapis arvensisSoilSoil TemperatureSwineairair temperaturealfalfaapplication ratebeveragesbiomassbiomass productioncalcium chloridecarboncarbon dioxidechiselingclaycleaningcollarscombustioncomputed tomographycomputer softwareconventional tillagecorncover cropscrop rotationcropscuttingdairy manurediscingdiurnal variationemissionsequationsexperimental designfarmingfarming systemsfertilizer applicationfertilizersflame ionizationforagefreezingglacial tillglobal warminggrain yieldgreenhouse gas emissionsgreenhouse gasesgrowing seasonharrowingharvestingheadheat sumshoeingicelakesmagnesiummanagement systemsmanual weed controlmarket pricesmature plantsmethanemixed croppingmolesmonitoringmowingnitrogen fixationnitrous oxideno-tillagenutrient contenton-farm researchorganic foodspHpasturespesticidespig manureplantingplowsregression analysisresidual effectsrootsrow spacingryesalesseed collectingseedbedsseedsshootssnowsoil depthsoil texturesorrelsoybeansspringspring wheatstarter fertilizersstatistical modelsstrip tillagetemperaturetillageweed controlweedswheatwinter
Formats:
HTML
United States Department of Agriculture10 months ago
Landslides in New JerseySource

This Landslides data contains point and other attributes for historic and recent landslide locations in New Jersey mapped by the New Jersey Geological Survey (NJGS). The landslides have occurred in many parts of the state and include slumps, debris flows, rockfalls and rockslides. Landslides in New Jersey are a geologic hazard in areas with steep to moderate slopes or geologic units prone to failure. They cause damage to utilities, property, and transportation routes. The average annual direct and indirect cost of New Jersey landslides is likely in the hundreds of thousands of dollars. New Jersey landslides have also caused fatalities and injuries. The landslides are caused by heavy rains, weathering, ocean waves, quarrying and construction activities.

0
No licence known
Tags:
Geol_landslideNJDEPNJDEPTrentonMetadataNew JerseyState of New Jerseybluffdebris flowgeologygeoscientificInformationhazardheadlandslidemass wastingnjlandslidesrockfallrockslideslopeslumpslump blockslumpingsurficialtalustoe
Formats:
HTMLArcGIS GeoServices REST APICSVGeoJSONZIPKML
The Federal Emergency Management Agency (FEMA)about 1 year ago
On-Farm Residue Removal Study for Resilient Economic Agricultural Practices in Morris, Minnesota

On-Farm Residue Removal Study for Resilient Economic Agricultural Practices in Morris, Minnesota Interest in harvesting crop residues for energy has waxed and waned since the oil embargo of 1973. Since the at least the late 1990’s interest has been renewed due to concern of peak oil, highly volatile natural gas prices, replacing fossil fuel with renewable sources and a push for energy independence. The studies conducted on harvesting crop residues during the 1970’s and1980’s focused primarily on erosion risk and nutrient removal as a result early estimates of residue availability focused on erosion control (Perlack et al., 2005). More recently, the focus has expanded to also address harvest impacts on soil organic matter and other constraints (Wilhelm et al., 2007; Wilhelm et al., 2010). In West Central Minnesota, crop residues have been proposed a replacement for natural gas (Archer and Johnson, 2012) while nationally residues are also be considered for cellulosic ethanol production (US DOE, 2011). The objective of the on-farm study was to assess the impact of residue harvest on working farms with different management systems and soils. Indicators of erosion risk, soil organic matter, and crop productivity is response to grain plus cob, or grain plus stover compared to grain only harvest.

0
No licence known
Tags:
EnvironmentMinnesotaMorris MN OnFmNP211NP212Natural Resources and GenomicsREAPSoilUnited States Environmental Protection Agencybioethanolbulk densitycombustioncorncorn stovercrop rotationearsenergyerosion controlethanol productionfarmingfarmsharvest indexheadleavesmanagement systemsmanual harvestingnatural gasnutrientsoilsparticulate organic matterphosphoruspricesrisksoil organic mattersoil samplingsoybeansstrawvegetation coverwet digestion method
Formats:
HTML
United States Department of Agriculture10 months ago