Open Net Zero logo

Filters

Formats:
Select...
Licenses:
Select...
Organizations:
Select...
Tags:
Select...
Shared:
Sensitivities:
Datasets
L o a d i n g
Data from: Grain inoculated with different growth stages of the fungus, Aspergillus flavus, affect the close-range foraging behavior by a primary stored product pest, Sitophilus oryzae (Coleoptera: Curculionidae)

Our goals with this dataset were to 1) isolate, culture, and identify two fungal life stages of Aspergillus flavus, 2) characterize the volatile emissions from grain inoculated by each fungal morphotype, and 3) understand how microbially-produced volatile organic compounds (MVOCs) from each fungal morphotype affect foraging, attraction, and preference by S. oryzae. This dataset includes that derived from headspace collection coupled with GC-MS, where we found the sexual life stage of A. flavus had the most unique emissions of MVOCs compared to the other semiochemical treatments. This translated to a higher arrestment with kernels containing grain with the A. flavus sexual life stage, as well as a higher cumulative time spent in those zones by S. oryzae in a video-tracking assay in comparison to the asexual life stage. While fungal cues were important for foraging at close-range, the release-recapture assay indicated that grain volatiles were more important for attraction at longer distances. There was no significant preference between grain and MVOCs in a four-way olfactometer, but methodological limitations in this assay prevent broad interpretation. Overall, this study enhances our understanding of how fungal cues affect the foraging ecology of a primary stored product insect. In the assays described herein, we analyzed the behavioral response of Sitophilus oryzae to five different blends of semiochemicals found and introduced in wheat (Table 1). Briefly, these included no stimuli (negative control), UV-sanitized grain, clean grain from storage (unmanipulated, positive control), as well as grain from storage inoculated with fungal morphotype 1 (M1, identified as the asexual life stage of Aspergillus flavus) and fungal morphotype 2 (M2, identified as the sexual life stage of A. flavus). Fresh samples of semiochemicals were used for each day of testing for each assay. In order to prevent cross-contamination, 300 g of grain (tempered to 15% grain moisture) was initially sanitized using UV for 20 min. This procedure was done before inoculating grain with either morphotype 1 or 2. The 300 g of grain was kept in a sanitized mason jar (8.5 D × 17 cm H). To inoculate grain with the two different morphologies, we scraped an entire isolation from a petri dish into the 300 g of grain. Each isolation was ~1 week old and completely colonized by the given morphotype. After inoculation, each treatment was placed in an environmental chamber (136VL, Percival Instruments, Perry, IA, USA) set at constant conditions (30°C, 65% RH, and 14:10 L:D). This procedure was the same for both morphologies and was done every 2 weeks to ensure fresh treatments for each experimental assay. See file list for descriptions of each data file.

0
No licence known
Tags:
ARSAspergillus flavusCGAHR Lab colonyCentral Great PlainsColeopteraEcologyKansas State UniversityLife stagesNP304USDAbehaviorcgahrchemical ecologyforaginggrainheadspacemicrobesolfactionprimary pestrelease-recapturerice weevilsemiochemicalssitophilusstored product pestvolatiles
Formats:
CSVTXT
United States Department of Agriculture10 months ago
Data from: Microbial volatile organic compounds mediate attraction by a primary but not secondary stored product insect pest in wheat

This dataset is associated with the forthcoming publication entitled, "Microbial volatile organic compounds mediate attraction by a primary but not secondary stored product insect pest in wheat", and includes data on grain damage from near infrared spectroscopy, behavioral data from wind tunnel and release-recapture experiments, as well as volatile characterization of headspace from moldy grain. For all files, incubation intervals 9, 18, and 27 d represent how long grain was incubated after being tempered to a grain moisture of 12, 15, or 19% or left untempered (ctrl; 10.8% grain moisture). TSO = Trece storgard oil; empty = negative control (no stimulus), LGB = lesser grain borer (Rhzyopertha dominica), and RFB = red flour beetle (Tribolium castaneum). Note: The resource 'GC/MS Grain MVOC Headspace Data' was added 2021-08-04 with the deletion of some compounds as unlikely natural compounds and potential contaminants. This is the dataset that undergirds the non-metric multidimensional scaling analysis. See the included file list for more information about methods and results of each file in this dataset.

0
No licence known
Tags:
AgricultureMVOCsNP304behaviorchemical ecologyentomologyheadspacelesser grain borermicrobial cuesred flour beetlestored product pestsstored productstrappingwind tunnel
Formats:
CSVTXT
United States Department of Agriculture10 months ago