Open Net Zero logo

Filters

Formats:
Select...
Licenses:
Select...
Organizations:
Select...
Tags:
Select...
Shared:
Sensitivities:
Datasets
L o a d i n g
EGS Collab Experiment 1: Continuous Active-Source Seismic Monitoring (CASSM) DataSource

The U.S. Department of Energy's Enhanced Geothermal System (EGS) Collab project aims to improve our understanding of hydraulic stimulations in crystalline rock for enhanced geothermal energy production through execution of intensely monitored meso-scale experiments. The first experiment was performed at the 4850 ft level of the Sanford Underground Research Facility (SURF), approximately 1.5 km below the surface at Lead, South Dakota. The data reported here were collected by the continuous active-source seismic monitoring (CASSM) system (Ajo-Franklin et al., 2011). This system was permanently installed in the testbed and consisted of 17 piezoelectric sources that were recorded by 2-12 channel hydrophone arrays, 18 3-C accelerometers, and 4 3-C geophones at a Nyquist frequency of 24kHz. The source array was activated in a repeated sequence of shots (each source fired 16 times and stacked into resultant waveforms) for the duration of the experiment (April 25, 2018 - March 7, 2019) with few exceptions. Please see the attached documents describing the source / receiver geometry. The data are available in both seg2 (.dat extension) and segy (.sgy extension) format. Each segy file contains multiple seg2 files.

0
No licence known
Tags:
Active SourceCASSMEGSEGS CollabExperiment 1ImagingMonitoringSURFSanford Underground Research FacilitySeismicaccelerometercontinuousenergyexperimentfracturinggeophonegeophysicsgeothermalhydraulichydrophonemeso scalestimulationwell instrumentation
Formats:
TXTXLSXPDFHTML
National Renewable Energy Laboratory (NREL)about 1 year ago
Triton Field Trials (TFiT) underwater noise - University of New Hampshire Living Bridge turbine Processed DataSource

In July 2021, a commercial-off-the-shelf hydrophone was deployed in a free-drifting configuration to measure underwater acoustic emissions and characterize a 25 kW-rated tidal turbine at the University of New Hampshire's Living Bridge Project in Portsmouth, New Hampshire. Sampling methods and analysis were performed in alignment with the recently published IEC 62600-40 Technical Specification for acoustic characterization of marine energy converters. Results from this study indicate acoustic emissions from the turbine were below ambient sound levels and therefore did not have a significant impact on the underwater noise levels of the project site. As a component of Pacific Northwest National Laboratory's Triton Field Trials (TFiT) described in a paper published in a Special Issue of Journal of Marine Energy Science and Engineering, this study provides a valuable use case for the IEC 62600-40 Technical Specification framework and further recommendations for cost-effective technologies and methods for measuring underwater noise at future current energy converter project sites. The paper can be accessed in the link bellow.

0
No licence known
Tags:
CECHydrokineticLiving Bridge ProjectMHKMarineTFiTacousticacoustic emissionscross flow turbinecurrent energy converterdrifting hydrophoneenergyenvironmentalenvironmental monitoringhydrophonemarine energypowerprocessed dataraw datatidal turbineunderwater noise
Formats:
ZIPHTMLJPEG
National Renewable Energy Laboratory (NREL)about 1 year ago