Open Net Zero logo

Filters

Formats:
Select...
Licenses:
Select...
Organizations:
Select...
Tags:
Select...
Shared:
Sensitivities:
Datasets
L o a d i n g
Advanced Control Systems for Wave Energy ConvertersSource

This submission contains several papers, a final report, descriptions of a theoretical framework for two types of control systems, and descriptions of eight real-time flap load control policies with the objective of assessing the potential improvement of annual average capture efficiency at a reference site on an MHK device developed by Resolute Marine Energy, Inc. (RME). The submission also contains an LCOE model that estimates the performance and related energy cost improvements that each advanced control system might provide and recommendations for improving DOE's LCOE model. The two types of control systems are for wave energy converters which transform data into commands that, in the case of RME's OWSC wave energy converter, provide real-time adjustments to damping forces applied to the prime mover via the power take-off system (PTO). The control theories developed were: 1) Model Predictive Control (MPC) or so-called "non-causal" control whereby sensors deployed seaward of a wave energy converter measure incoming wave characteristics and transmit that information to a data processor which issues commands to the PTO to adjust the damping force to an optimal value; and 2) "Causal" control which utilizes local sensors on the wave energy converter itself to transmit information to a data processor which then issues appropriate commands to the PTO. The two advanced control policies developed by Scruggs and Re Vision were then compared to a simple control policy, Coulomb damping, which was utilized by RME during the two rounds of ocean trials it had conducted prior to the commencement of this project. The project work plan initially included a provision for RME to conduct hardware-in-the-loop (HIL) testing of the data processors and configurations of valves, sensors and rectifiers needed to implement the two advanced control systems developed by Scruggs and Re Vision Consulting but the funding for that aspect of the project was cut at the conclusion of Budget Period 1. Accordingly, more work needs to be done to determine: a) means and feasibility of implementing real-time control; and b) added costs associated with such implementation taking into account estimated effects on system availability in addition to component costs.

0
No licence known
Tags:
CoulombHydrokineticLCOEMHKMPCMarineOWSCPTORMERe Vision ConsultingResolute MarineSWANSurgeWECWWIIIcausalcausal controlcodecomparisoncontrolcontrol systemsconvertercostcoulomb dampingeconomicsenergyfeedforward controlsmethodologymodelmodel predictive controlnon-causalnon-causal controloceanoscillatingpowerpower-take-offpredictedpredictivereceding-horizonreportsimplestochasticsurge convertersystemtechnologywave
Formats:
PDFDOCXXLSX
National Renewable Energy Laboratory (NREL)about 1 year ago
Machine Learning-Assisted High-Temperature Reservoir Thermal Energy Storage Optimization: Numerical Modeling and Machine Learning Input and Output FilesSource

This data set includes the numerical modeling input files and output files used to synthesize data, and the reduced-order machine learning models trained from the synthesized data for reservoir thermal energy storage site identification. In this study, a machine-learning-assisted computational framework is presented to identify High-Temperature Reservoir Thermal Energy Storage (HT-RTES) site with optimal performance metrics by combining physics-based simulation with stochastic hydrogeologic formation and thermal energy storage operation parameters, artificial neural network regression of the simulation data, and genetic algorithm-enabled multi-objective optimization. A doublet well configuration with a layered (aquitard-aquifer-aquitard) generic reservoir is simulated for cases of continuous operation and seasonal-cycle operation scenarios. Neural network-based surrogate models are developed for the two scenarios and applied to generate the Pareto fronts of the HT-RTES performance for four potential HT-RTES sites. The developed Pareto optimal solutions indicate the performance of HT-RTES is operation-scenario (i.e., fluid cycle) and reservoir-site dependent, and the performance metrics have competing effects for a given site and a given fluid cycle. The developed neural network models can be applied to identify suitable sites for HT-RTES, and the proposed framework sheds light on the design of resilient HT-RTES systems. All the simulations and the neural network model were done by Idaho National Laboratory. A detailed description of the work was reported in publication linked below.

0
No licence known
Tags:
ANNFalconGeoTESHT-RTESHigh-TemperatureMOOSEMachine LearningModelingOptimizationPareto frontsReservoir Thermal Energy StorageStochastic SimulationTESThermal Energy Storageartificial neural network regressioncharacterizationcontinuous operationhydrogeologic formationneural networknumerical modeloperation scenariosseasonal operationseasonal-cyclesimulated datasimulation datastochastic
Formats:
118ZIPHTML
National Renewable Energy Laboratory (NREL)about 1 year ago
Tularosa Basin Play Fairway: Weights of Evidence ModelsSource

These models are related to weights of evidence play fairway anlaysis of the Tularosa Basin, New Mexico and Texas. They were created through Spatial Data Modeler: ArcMAP 9.3 geoprocessing tools for spatial data modeling using weights of evidence, logistic regression, fuzzy logic and neural networks. It used to identify high values for potential geothermal plays and low values. The results are relative not only within the Tularosa Basin, but also throughout New Mexico, Utah, Nevada, and other places where high to moderate enthalpy geothermal systems are present (training sites).

0
No licence known
Tags:
basinexplorationgeospatial datageothermalgeothermal explorationmodelmodellingnew mexicopfaplay fairway analysispost probabilityprobabilitystochasticstochastic anlysistexastularosaweights of evidencewofe
Formats:
ZIP
National Renewable Energy Laboratory (NREL)about 1 year ago