Open Net Zero logo

Filters

Formats:
Select...
Licenses:
Select...
Organizations:
Select...
Tags:
Select...
Shared:
Sensitivities:
Datasets
L o a d i n g
Motion of Tectonic PlatesSource

This story map tells the tale of Earth’s tectonic plates, their secret conspiracies, awe-inspiring exhibitions and subtle impacts on the maps and geospatial information we so often take for granted as unambiguous. But is it? We recommend you journey through this map on the trail we’ve manicured on the left. You will find yourself hovering over the Mid-Atlantic Ridge or swimming in magma deep within the Earth’s core. Have fun and we hope your voyage is fruitful!

0
No licence known
Tags:
Map JournalNature and EnvironmentStory Mapconvergencecrustal motionearthquakesepicentereruptionfaultsgeodesygeologyseismictectonic platestectonicsvolcanoes
Formats:
HTMLArcGIS GeoServices REST API
The Federal Emergency Management Agency (FEMA)about 1 year ago
Structural and Tectonic Controls of Geothermal Activity in the Basin and Range ProvinceSource

We are conducting an inventory of structural settings of geothermal systems (>400 total) in the extensional to transtensional Great Basin region of the western USA. A system of NW-striking dextral faults known as the Walker Lane accommodates ~20% of the North American-Pacific plate motion in the western Great Basin and is intimately linked to N- to NNE-striking normal fault systems throughout the region. Overall, geothermal systems are concentrated in areas with the highest strain rates within or proximal to the eastern and western margins of the Great Basin, with the highest temperature systems clustering in transtensional areas of highest strain rate in the northwestern Great Basin. Of the 250+ geothermal fields catalogued, step-overs or relay ramps in normal fault zones serve as the most favorable setting, hosting ~32% of the systems. Such areas have multiple, overlapping fault strands, increased fracture density, and thus enhanced permeability. Other common settings include a) intersections between normal faults and strike-slip or oblique-slip faults (22%), where multiple minor faults connect major structures and fluids can flow readily through highly fractured, dilational quadrants, and b) normal fault terminations or tip-lines (22%), where horse-tailing generates closely-spaced faults and increased permeability. Other settings include accommodation zones (i.e., belts of intermeshing, oppositely dipping normal faults; 8%), major normal faults (6%), displacement transfer zones (5%), and pull-aparts in strike-slip faults (4%). In addition, Quaternary faults lie within or near most systems (e.g., Bell and Ramelli, 2007). The relative scarcity of geothermal systems along displacement-maxima of major normal faults may be due to reduced permeability in thick zones of clay gouge and periodic release of stress in major earthquakes. Step-overs, terminations, intersections, and accommodation zones correspond to long-term, critically stressed areas, where fluid pathways are more likely to remain open in networks of closely-spaced, breccia-dominated fractures.

0
No licence known
Tags:
Basin and RangeGreat BasinNevadaStrain RatesStructural ControlsWalker LaneWestern USAcataloguefaultingfaultsgeothermalstructural geologystructural settingtectonics
Formats:
PDF
National Renewable Energy Laboratory (NREL)about 1 year ago