Open Net Zero logo

Filters

Formats:
Select...
Licenses:
Select...
Organizations:
Select...
Tags:
Select...
Shared:
Sensitivities:
Datasets
L o a d i n g
Bulk Download FacilitySource

The bulk download facility provides the entire contents of each major API data set in a single ZIP file. A small JSON formatted manifest file lists the bulk files and the update date of each file. The manifest is generally updated daily and can be downloaded from http://api.eia.gov/bulk/manifest.txt. The manifest contains information about the bulk files, including all required common core attributes.

0
No licence known
Tags:
accessLevelaccessLevelCommentaccessURLcategory_iddata_setdescriptionformatidentifierkeywordlast_updatedlicensemboxmodifiedpersonpublisherspatialtemporaltitlewebService
Formats:
API
The U.S. Department of Energy (DOE)10 months ago
MODIS (True Color)Source

This series of products from MODIS represents the only daily global composites available and is suitable for use at global and regional levels. This True Color band composition (Bands 1 4 3 | Red, Green, Blue) most accurately shows how we see the earth’s surface with our own eyes. It is a natural looking image that is useful for land surface, oceanic and atmospheric analysis. This map shows the 250 meter corrected reflectance product from both satellites that carry a MODIS, Aqua and Terra. Although the resolution is coarser than other satellites, this allows for a global collection of imagery on a daily basis, which is made available in near real-time. In contrast, Landsat needs 16 days to collect a global composite. Besides the maximum resolution difference, the surface and corrected reflectance products also differ in the algorithm used for atmospheric correction.NASA Global Imagery Browse Services (GIBS)This image layer provides access to a subset of the NASA Global Imagery Browse Services (GIBS), which are a set of standard services to deliver global, full-resolution satellite imagery. The GIBS goal is to enable interactive exploration of NASA's Earth imagery for a broad range of users. The purpose of this image layer, and the other GIBS image services hosted by Esri, is to enable convenient access to this beautiful and useful satellite imagery for users of ArcGIS. The source data used by this image layer is a finished image; it is not recommended for quantitative analysis.Several full resolution, global imagery products are built and served by GIBS in near real-time (usually within 3.5 hours of observation). These products are built from NASA Earth Observing System satellites data courtesy of LANCE data providers and other sources. The MODIS instrument aboard Terra and Aqua satellites, the AIRS instrument aboard Aqua, and the OMI instrument aboard Aura are used as sources. Several of the MODIS global products are made available on this Esri hosted service.This image layer hosted by Esri provides direct access to one of the GIBS image products. The Esri servers do not store any of this data itself. Instead, for each received data request, multiple image tiles are retrieved from GIBS, which are then processed and assembled into the proper image for the response. This processing takes place on-the-fly, for each and every request. This ensures that any update to the GIBS data is immediately available in the Esri mosaic service.Note on Time: The image service supporting this map is time enabled, but time has been disabled on this image layer so that the most recent imagery displays by default. If you would like to view imagery over time, you can update the layer properties to enable time animation and configure time settings. The results can be saved in a web map to use later or share with others.

0
No licence known
Tags:
143AquaMODISTerraTrue Colorimagerytemporal
Formats:
HTML
The Federal Emergency Management Agency (FEMA)about 1 year ago
MODIS True Color - Aqua Corrected ReflectanceSource

This series of products from MODIS represents the only daily global composites available and is suitable for use at global and regional levels. This True Color band composition (Bands 1 4 3 | Red, Green, Blue) most accurately shows how we see the earth’s surface with our own eyes. It is a natural looking image that is useful for land surface, oceanic and atmospheric analysis. There are four True Color products in total. For each satellite (Aqua and Terra) there is a 250 meter corrected reflectance product and a 500 meter surface reflectance product. Although the resolution is coarser than other satellites, this allows for a global collection of imagery on a daily basis, which is made available in near real-time. In contrast, Landsat needs 16 days to collect a global composite. Besides the maximum resolution difference, the surface and corrected reflectance products also differ in the algorithm used for atmospheric correction.NASA Global Imagery Browse Services (GIBS)This image layer provides access to a subset of the NASA Global Imagery Browse Services (GIBS), which are a set of standard services to deliver global, full-resolution satellite imagery. The GIBS goal is to enable interactive exploration of NASA's Earth imagery for a broad range of users. The purpose of this image layer, and the other GIBS image services hosted by Esri, is to enable convenient access to this beautiful and useful satellite imagery for users of ArcGIS. The source data used by this image layer is a finished image; it is not recommended for quantitative analysis.Several full resolution, global imagery products are built and served by GIBS in near real-time (usually within 3.5 hours of observation). These products are built from NASA Earth Observing System satellites data courtesy of LANCE data providers and other sources. The MODIS instrument aboard Terra and Aqua satellites, the AIRS instrument aboard Aqua, and the OMI instrument aboard Aura are used as sources. Several of the MODIS global products are made available on this Esri hosted service.This image layer hosted by Esri provides direct access to one of the GIBS image products. The Esri servers do not store any of this data itself. Instead, for each received data request, multiple image tiles are retrieved from GIBS, which are then processed and assembled into the proper image for the response. This processing takes place on-the-fly, for each and every request. This ensures that any update to the GIBS data is immediately available in the Esri mosaic service.Note on Time: The image service supporting this layer is time enabled, but time has been disabled on this image layer so that the most recent imagery displays by default. If you would like to view imagery over time, you can update the layer properties to enable time animation and configure time settings. The results can be saved in a web map to use later or share with others.IMPORTANT NOTICE: On August 16, 2020, Aqua MODIS experienced an anomaly with the Formatter-Multiplexer Unit (FMU). As a result, imagery was not produced from August 16, 2020 through September 2, 2020.

0
No licence known
Tags:
143AquaMODISTrue Colorimagerymultispectraltemporal
Formats:
HTMLArcGIS GeoServices REST API
The Federal Emergency Management Agency (FEMA)about 1 year ago
MODIS True Color - Terra Surface ReflectanceSource

This series of products from MODIS represents the only daily global composites available and is suitable for use at global and regional levels. This True Color band composition (Bands 1 4 3 | Red, Green, Blue) most accurately shows how we see the earth’s surface with our own eyes. It is a natural looking image that is useful for land surface, oceanic and atmospheric analysis. There are four True Color products in total. For each satellite (Aqua and Terra) there is a 250 meter corrected reflectance product and a 500 meter surface reflectance product. Although the resolution is coarser than other satellites, this allows for a global collection of imagery on a daily basis, which is made available in near real-time. In contrast, Landsat needs 16 days to collect a global composite. Besides the maximum resolution difference, the surface and corrected reflectance products also differ in the algorithm used for atmospheric correction.NASA Global Imagery Browse Services (GIBS)This image layer provides access to a subset of the NASA Global Imagery Browse Services (GIBS), which are a set of standard services to deliver global, full-resolution satellite imagery. The GIBS goal is to enable interactive exploration of NASA's Earth imagery for a broad range of users. The purpose of this image layer, and the other GIBS image services hosted by Esri, is to enable convenient access to this beautiful and useful satellite imagery for users of ArcGIS. The source data used by this image layer is a finished image; it is not recommended for quantitative analysis.Several full resolution, global imagery products are built and served by GIBS in near real-time (usually within 3.5 hours of observation). These products are built from NASA Earth Observing System satellites data courtesy of LANCE data providers and other sources. The MODIS instrument aboard Terra and Aqua satellites, the AIRS instrument aboard Aqua, and the OMI instrument aboard Aura are used as sources. Several of the MODIS global products are made available on this Esri hosted service.This image layer hosted by Esri provides direct access to one of the GIBS image products. The Esri servers do not store any of this data itself. Instead, for each received data request, multiple image tiles are retrieved from GIBS, which are then processed and assembled into the proper image for the response. This processing takes place on-the-fly, for each and every request. This ensures that any update to the GIBS data is immediately available in the Esri mosaic service.Note on Time: The image service supporting this layer is time enabled, but time has been disabled on this image layer so that the most recent imagery displays by default. If you would like to view imagery over time, you can update the layer properties to enable time animation and configure time settings. The results can be saved in a web map to use later or share with others.

0
No licence known
Tags:
143MODISTerraTrue Colorimagerymultispectraltemporal
Formats:
HTMLArcGIS GeoServices REST API
The Federal Emergency Management Agency (FEMA)about 1 year ago
Magnetotelluric Data Collected in 2016 over the San Emidio Geothermal Field in NevadaSource

This data set includes the magnetotelluric (MT) data collected from October 21 to November 9, 2016 over the San Emidio geothermal field in Nevada by Quantec Geoscience USA Inc. on behalf of US Geothermal Inc. as part of a project entitled "A Novel Approach to Map Permeability Using Passive Seismic Emission Tomography". This data set includes descriptions of the instrumentation, data acquisition and processing procedures, as well as the final processed data and digital archive formats. A total of 81 MT locations were surveyed (52 profile sites, and 29 MT sites). Data were processed and inspected for quality assurance on site, and reviewed daily by the geophysicist in charge of the project.

0
No licence known
Tags:
GeophysicsPacific DC IntertieProcessed dataWHOLESCALEenergygeothermalgravityholehydrologicintegrated geologic modelmagnetotelluricsmechanicalmodelingobservationpassive micro-seismicphysicsspatialstresssystemtemporalthermalwater
Formats:
PDFZIPKMLTXT
National Renewable Energy Laboratory (NREL)about 1 year ago
Multispectral LandsatSource

This layer includes Landsat GLS, Landsat 8, and Landsat 9 imagery for use in visualization and analysis. This layer is time enabled and includes a number band combinations and indices rendered on demand. The Landsat 8 and 9 imagery includes nine multispectral bands from the Operational Land Imager (OLI) and two bands from the Thermal Infrared Sensor (TIRS). It is updated daily with new imagery directly sourced from the USGS Landsat collection on AWS.Geographic CoverageGlobal Land Surface.Polar regions are available in polar-projected Imagery Layers:  Landsat Arctic Views and Landsat Antarctic Views.Temporal CoverageThis layer is updated daily with new imagery.Working in tandem, Landsat 8 and 9 revisit each point on Earth's land surface every 8 days.Most images collected from January 2015 to present are included.Approximately 5 images for each path/row from 2013 and 2014 are also included.This layer also includes imagery from the Global Land Survey* (circa 2010, 2005, 2000, 1990, 1975).Product LevelThe Landsat 8 and 9 imagery in this layer is comprised of Collection 2 Level-1 data.The imagery has Top of Atmosphere (TOA) correction applied.TOA is applied using the radiometric rescaling coefficients provided the USGS.The TOA reflectance values (ranging 0 – 1 by default) are scaled using a range of 0 – 10,000.Image Selection/FilteringA number of fields are available for filtering, including Acquisition Date, Estimated Cloud Cover, and Product ID.To isolate and work with specific images, either use the ‘Image Filter’ to create custom layers or add a ‘Layer Filter’ to restrict the default layer display to a specified image or group of images.To isolate a specific mission, use the Layer Filter and the dataset_id or SensorName fields.Visual RenderingThe default rendering in this layer is Agriculture (bands 6,5,2) with Dynamic Range Adjustment (DRA).  Brighter green indicates more vigorous vegetation.The DRA version of each layer enables visualization of the full dynamic range of the images.Rendering (or display) of band combinations and calculated indices is done on-the-fly from the source images via Raster Functions.Various pre-defined Raster Functions can be selected or custom functions can be created.Pre-defined functions:  Natural Color with DRA, Agriculture with DRA, Geology with DRA, Color Infrared with DRA, Bathymetric with DRA, Short-wave Infrared with DRA, Normalized Difference Moisture Index Colorized, NDVI Raw, NDVI Colorized, NBR Raw15 meter Landsat Imagery Layers are also available:  Panchromatic and Pansharpened.Multispectral Bands   Band Description Wavelength (µm) Spatial Resolution (m) 1 Coastal aerosol 0.43 - 0.45 30 2 Blue 0.45 - 0.51 30 3 Green 0.53 - 0.59 30 4 Red 0.64 - 0.67 30 5 Near Infrared (NIR) 0.85 - 0.88 30 6 SWIR 1 1.57 - 1.65 30 7 SWIR 2 2.11 - 2.29 30 8 Cirrus (in OLI this is band 9) 1.36 - 1.38 30 9 QA Band (available with Collection 1)* NA 30  *More about the Quality Assessment BandTIRS Bands Band Description Wavelength (µm) Spatial Resolution (m) 10 TIRS1 10.60 - 11.19 100 * (30) 11 TIRS2 11.50 - 12.51 100 * (30) *TIRS bands are acquired at 100 meter resolution, but are resampled to 30 meter in delivered data product.Additional Usage NotesImage exports are limited to 4,000 columns x 4,000 rows per request.This dynamic imagery layer can be used in Web Maps and ArcGIS Pro as well as web and mobile applications using the ArcGIS REST APIs.WCS and WMS compatibility means this imagery layer can be consumed as WCS or WMS services.The Landsat Explorer App is another way to access and explore the imagery.Data SourceLandsat imagery is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Data is hosted in Amazon Web Services as part of their Public Data Sets program.For information, see Landsat 8  and Landsat 9.*The Global Land Survey includes images from Landsat 1 through Landsat 7. Band numbers and band combinations differ from those of Landsat 8, but have been mapped to the most appropriate band as in the above table. For more information about the Global Land Survey, visit GLS.

0
No licence known
Tags:
LandsatLandsat on AWSMSMultispectralMultitemporalimagerylandsat 8landsat 9temporal
Formats:
HTMLArcGIS GeoServices REST API
The Federal Emergency Management Agency (FEMA)about 1 year ago
Pansharpened LandsatSource

This layer includes Landsat 8 and 9 imagery for use in visualization and analysis. This layer is time enabled and includes a number of pansharpened renderings on demand. The layer includes 15m imagery rendered on-the-fly as Natural Color with DRA.  It is updated daily with new imagery directly sourced from the USGS Landsat collection on AWS.Geographic CoverageGlobal Land Surface.Polar regions are available in polar-projected Imagery Layers:  Landsat Arctic Views and Landsat Antarctic Views.Temporal CoverageThis layer is updated daily with new imagery.Working in tandem, Landsat 8 and 9 revisit each point on Earth's land surface every 8 days.Most images collected from January 2015 to present are included.Approximately 5 images for each path/row from 2013 and 2014 are also included.Product LevelThe Landsat 8 and 9 imagery in this layer is comprised of Collection 2 Level-1 data.The imagery has Top of Atmosphere (TOA) correction applied.TOA is applied using the radiometric rescaling coefficients provided the USGS.The TOA reflectance values (ranging 0 – 1 by default) are scaled using a range of 0 – 10,000.Image Selection/FilteringA number of fields are available for filtering, including Acquisition Date, Estimated Cloud Cover, and Product ID.To isolate and work with specific images, either use the ‘Image Filter’ to create custom layers or add a ‘Query Filter’ to restrict the default layer display to a specified image or group of images.Visual RenderingDefault rendering is PanSharpened Natural Color images.Raster Functions enable on-the-fly rendering of band combinations and calculated indices from the source imagery.The DRA version of each layer enables visualization of the full dynamic range of the images.Other pre-defined Raster Functions can be selected via the renderer drop-down or custom functions can be created.This layer is part of a larger collection of Landsat Imagery Layers that you can use to perform a variety of mapping analysis tasks.Additional Usage NotesImage exports are limited to 4,000 columns x 4,000 rows per request.This dynamic imagery layer can be used in Web Maps and ArcGIS Pro as well as web and mobile applications using the ArcGIS REST APIs.WCS and WMS compatibility means this imagery layer can be consumed as WCS or WMS services.The Landsat Explorer App is another way to access and explore the imagery.Data SourceLandsat imagery is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). Data is hosted in Amazon Web Services as part of their Public Data Sets program.For information, see Landsat 8  and Landsat 9.

0
No licence known
Tags:
LandsatLandsat on AWSMultitemporalPSPansharpenedimagerylandsat 8landsat 9multispectraltemporal
Formats:
HTMLArcGIS GeoServices REST API
The Federal Emergency Management Agency (FEMA)about 1 year ago
Passive Seismic Emission Tomography Results at San Emidio NevadaSource

The utility of passive seismic emission tomography for mapping geothermal permeability has been tested at San Emidio in Nevada. The San Emidio study area overlaps a geothermal field in production since 1987 and another resource to the south of the production field. Passive seismic data collections were completed at San Emidio in late 2016 by Microseismic Inc as part of a DOE project. The PSET results are being analyzed as part of the WHOLESCALE project. This submission includes P-wave velocity model data, and the passive seismic data with more information on each bellow.

0
No licence known
Tags:
P-Wave Velocity ModelP-wavePSETSan EmidioWHOLESCALEcharacteriztionenergyexcelgeophysicsgeospatial datageothermalholehydrologichydrothermalmechanicalmodelingobservationpassive seismicphysicsprocessed dataseismicspatialstresssystemtemporalthermalvelocitywater
Formats:
CSV
National Renewable Energy Laboratory (NREL)about 1 year ago
Portland DDU Feasibility Study: The Spatial and Temporal Evolution of the Portland and Tualatin Basins, Oregon, USASource

The Portland and Tualatin basins are part of the Puget-Willamette Lowland in the Cascadia forearc of Oregon and Washington. The Coast Range to the west has undergone Paleogene transtension and Neogene transpression, which is reflected in basin stratigraphy. To better understand the tectonic evolution of the region, Darby Scanlon modeled three key stratigraphic horizons and their associated depocenters (areas of maximum sediment accumulation) through space and time using well log, seismic, outcrop, aeromagnetic, and gravity data. Three isochore maps were created to constrain the location of Portland and Tualatin basin depocenters during 1) Pleistocene to mid-Miocene (0-15 Ma), 2) eruption of the Columbia River Basalt Group (CRBG, 15.5-16.5 Ma), and 3) MidMiocene to late Eocene time (~17-35 Ma). Results show that the two basins each have distinct mid-Miocene to Pleistocene depocenters. The depth to CRBG in the Portland basin reaches a maximum of ~1,640 ft, 160 ft deeper than the Tualatin basin. Although the Portland basin is separated from the Tualatin basin by the Portland Hills, inversion of gravity data suggests that the two were connected as one continuous basin prior to CRBG deposition. Local thickening of CRBG flows over a gravity low coincident with the Portland Hills suggests that Neogene transpression in the forearc reactivated the SylvanOatfield and Portland Hills faults as high angle reverse faults. This structural inversion separated the once continuous Portland and Tualatin basins in the mid-late Miocene. A change in the stress regime at that time marks the transition from Paleogene forearc extension to deformation dominated by north-south shortening due to collision of the forearc against the Canadian Coast Mountains. An eastward shift of the forearc basin ii depocenter over the Neogene likely reflects uplift of the Coast Range to the west. A change in regional stress in the mid to late-Miocene, along with uplift of the Oregon Coast Range, caused a 10-fold decrease in sediment accumulation rates across the Portland and Tualatin basins. Transpressional oblique-slip faulting continues to deform the region as the forearc undergoes clockwise rotation and collides with the rigid Canadian Coast Mountains to the north.

0
No licence known
Tags:
energyeocene basementgeophysicalgeophysicsgeothermalgeothermal explorationisochore mapsmodelingneogeneoregonpaleogeneportlandresource assementspatialtemporaltetonic eveolutiontop crbgtualatin basin
Formats:
PDF
National Renewable Energy Laboratory (NREL)about 1 year ago
Seismic Survey 2016 Data at San Emidio NevadaSource

In December 2016, 1301 vertical-component seismic instruments were deployed at the San Emidio Geothermal field in Nevada. The first record starts at 2016-12-05T02:00:00.000000Z (UTC) and the last record ends at 2016-12-11T14:00:59.998000Z (UTC). Data are stored in individual files in one-minute increments in SEGD and MSEED formats. See the metadata in GDR submission (linked below as "Seismic Survey 2016 Metadata at San Emidio Nevada") for details about the seismic station locations, seismic data logger specifications, instrumentation specifications, descriptions of data, a fracture finding summary, and the final report for the 2016 seismic survey done in San Emidio, Nevada.

0
No licence known
Tags:
NevadaSEGDSan EmidioWHOLESCALEcharacterizationdataenergygeophysicsgeothermalholehydrologichydrothermalmechanicalmetadataminiseedmodelingmseedobservationphysicsseismicseismicityspatialstresssurveysystemtemporalthermalwater
Formats:
ZIPHTML
National Renewable Energy Laboratory (NREL)about 1 year ago
Seismic Survey 2016 Metadata at San Emidio, NevadaSource

1301 Vertical Component seismic instruments were deployed at San Emidio Geothermal field in Nevada in December 2016. The first record starts at 2016-12-05T02:00:00.000000Z (UTC) and the last record ends at 2016-12-11T14:00:59.998000Z (UTC). Data are stored in individual files in one-minute increments. Data includes seismic station locations, seismic data logger specifications, instrumentation specifications, descriptions of data, a fracture finding summary and the final report for the 2016 WHOLESCALE seismic survey done in San Emidio, Nevada.

0
No licence known
Tags:
NevadaWHOLESCALEdataenergygeothermalholehydrologicintrumentationmechanicalmetadatamodelingobservationphysicsreportseismicseismicityspatialspecspecificationsspecsstresssurveysystemtechnical specificationtemporalthermalwater
Formats:
CSVPDFTXTsp1
National Renewable Energy Laboratory (NREL)about 1 year ago
The global water quality database GEMStatSource

The Global Water Quality database and information system GEMStat is hosted, operated, and maintained by the International Centre for Water Resources and Global Change (ICWRGC) in Koblenz, Germany, within the framework of the GEMS/Water Programme of the United Nations Environment Programme (UNEP), and in cooperation with the Federal Institute of Hydrology. GEMStat hosts water quality data of ground and surface waters providing a global overview of the condition of water bodies and the trends at global, regional and local levels.

0
Creative Commons Attribution
Tags:
classificationcontact informationenvironmental datafreshwater monitoringhydrosphereinland waterprogrammesspacialstationstemporalwater quality
Formats:
HTML
UNEPover 1 year ago
WHOLESCALE Catalog of Rock Samples at San Emidio Nevada collected in January 2021Source

This submission contains information on thirty-six rock samples collected from San Emidio, Nevada during January, 2021 for Subtask 2.3 of the WHOLESCALE project. The following resources include a .zip of rock sample photos taken in the field, a .zip of rock sample photos taken in the laboratory at UW-Madison, and an excel catalog of rock samples with information on sample name, rock type, coordinates of sample location, structural measurements, field notes, observations for plug preparation (e.g., weathering, ability to be cut and cored), and rock descriptions. It should be noted that not every sample was photographed in the field. Names and descriptions of rock formation units are taken from Rhodes et al. (2011). The README.txt file is a description of this submission.

0
No licence known
Tags:
NevadaSan EmidioWHOLESCALEcore samplesenergyfieldgeologygeothermalholehydrologicimagesmechanicalmodelingobservationphotosphysicsrock samplerock samplessamplesamplesspatialstresssystemtemporalthermalwater
Formats:
ZIPXLSXTXTHTML
National Renewable Energy Laboratory (NREL)about 1 year ago