Open Net Zero logo

Filters

Formats:
Select...
Licenses:
Select...
Organizations:
Select...
Tags:
Select...
Shared:
Sensitivities:
Datasets
L o a d i n g
Aquantis 2.5 MW Ocean Current Generation Device - MHK Hydrofoils Design, Wind Tunnel Optimization and CFD Analysis ReportSource

Dataset contains MHK Hydrofoils Design and Optimization and CFD Analysis Report for the Aquantis 2.5 MW Ocean Current Generation Device, as well as MHK Hydrofoils Wind Tunnel Test Plan and Checkout Test Report.

0
No licence known
Tags:
2.5 MWAquantisCECCFDHydrofoilsHydrokineticLaminar runMHKMarineanalysisaxialaxial flow turbineaxiscomputational fluid dynamicscurrentcurrent generation devicedesignenergygeometryhorizontalhydrofoilnumerical modelingoceanocean currentoptimizationperformance datapowertechnologytest plantest reportturbinewind tunnelwind tunnel tests
Formats:
PDFDOCXXLSX
National Renewable Energy Laboratory (NREL)about 1 year ago
Aquantis 2.5 MW Ocean Current Generation Device - Scaled Tank Test Design and ResultsSource

Aquantis 2.5 MW Ocean Current Generation Device, Tow Tank Dynamic Rig Structural Analysis Results. This is the detailed documentation for scaled device testing in a tow tank, including models, drawings, presentations, cost of energy analysis, and structural analysis. This dataset also includes specific information on drivetrain, roller bearing, blade fabrication, mooring, and rotor characteristics.

0
No licence known
Tags:
2.5 MWAquantisC-planeCECHydrokineticLCOEMHKMarineanalysisaxialaxial flow turbineaxisblade fabricationcost of energycurrentdesigndevicedrawingsdrivetraindynamic rigeconomicsenergygenerationhorizontallab datalab testlaboratory testinglevelized cost of energymodelingmodelsmooringoceanocean currentpowerpresentationsresourceresultsroller bearingrotor characteristicsstructuraltank testtechnologytow tankturbine
Formats:
XLSXPDFPPTXXLSMDOCXZIPDOCLOGMASGENCWRPPT
National Renewable Energy Laboratory (NREL)about 1 year ago
Aquantis 2.5 MW Ocean Current Generation Device Design DetailsSource

Items in this submission provide the detailed design of the Aquantis Ocean Current Turbine and accompanying analysis documents, including preliminary designs, verification of design reports, CAD drawings of the hydrostatic drivetrain, a test plan and an operating conditions simulation report. This dataset also contains analysis trade off studies of fixed vs. variable pitch and 2 vs. 3 blades.

0
No licence known
Tags:
AquantisBOMCADCECHydrokineticMHKMarineanalysis reportaxialaxial flow turbineaxisbill of materialsblade configurationcurrentdesigndesign reviewdetailsdrivetrainenergyfixed pitchhorizontalhydrostatic drivetrainoceanocean currentoperating conditionspowerreportseawater bearingsimulationstructural designtechnologytest planturbinevariable pitch
Formats:
XLSXPPTXSTEPDOCXXLSMPDFPPT
National Renewable Energy Laboratory (NREL)about 1 year ago
Design of high deflection foils for MHK applications - CFD filesSource

The Ocean Renewable Power Company's (ORPC's) goal is to design, develop, and test hydrofoils with large deflections. The effects of the deflections on cross-flow turbine performance would be evaluated in order to inform design considerations for full-scale water turbines and other marine hydrokinetic devices. OpenFOAM V1912 files for straight foil model scale turbines in the University of New Hampshire tow tank. Strut Locations = (0.13, 0.225, 0.450, 0.675, 0.900) [m] Tip speed ratio = 2.40

0
No licence known
Tags:
CFDHydrokineticMHKMarineOpenFOAMairfoilceccross flow turbinecurrent energy converterdesignenergyfoilhydrofoilmodelpowersimulationstraight turbinetidal turbineturbine
Formats:
ZIP
National Renewable Energy Laboratory (NREL)about 1 year ago
Design of high-deflection foils MHK applications - CFD models - Helical turbinesSource

The Ocean Renewable Power Company's (ORPC's) goal is to design, develop, and test hydrofoils with large deflections. The effects of the deflections on cross-flow turbine performance would be evaluated in order to inform design considerations for full-scale water turbines and other marine hydrokinetic devices. CFD models of helical model scale turbines tested at UNH OpenFOAM v1912 Tip Speed Ratio (TSR) = 3.00 Different strut configurations

0
No licence known
Tags:
CFDHydrokineticMHKMarineairfoilceccross flow turbinecurrent energy converterdesignenergyfoilhelical turbinehydrofoilmodelpowersimulationturbine
Formats:
ZIP
National Renewable Energy Laboratory (NREL)about 1 year ago
Design of high-deflection foils MHK applications - FEA models - Helical turbinesSource

The Ocean Renewable Power Company's (ORPC's) goal is to design, develop, and test hydrofoils with large deflections. The effects of the deflections on cross-flow turbine performance would be evaluated in order to inform design considerations for full-scale water turbines and other marine hydrokinetic devices. FEA models - NASTRAN Helical foil turbines tested at UNH tow tank Glass and carbon composite material properties Loads derived from CFD models

0
No licence known
Tags:
FEAHydrokineticMHKMarineairfoilceccross flow turbinecurrent energy converterdesignenergyfoilhelical turbinehydrofoilmaterialmaterial studymodelpowersimulationturbine
Formats:
nas
National Renewable Energy Laboratory (NREL)about 1 year ago
Emrgy 2022 Hydrokinetic Turbine Data - TEAMER Post Access SubmissionSource

The data herein contains all data collected and used for the Performance Characterization Testing and Model Calibration of a Vertical Axis Hydrokinetic Turbine. The data includes performance data and durability data for the Hydrokinetic Turbine. The device performance data contains shaft RPM, turbine RPM, power output, flow velocity, pressure, and pressure drop across the turbine. The mechanical durability data includes stress and strain at varied depths and velocities. There is also an FEA analysis included. This TEAMER project was awarded to Emrgy, Inc.in collaboration with Alden Research Laboratory LLC.

0
No licence known
Tags:
CECCFDEmrgyEmrgy Inc.FEAFlumeHydrokineticMHKNumerical ModelTEAMERTestcalibrationcross flowcross-flowcrossflowcrossflow turbinecurrent energy converterenergymarinemodelperformanceperformance testpowerturbine
Formats:
ZIPXLSX
National Renewable Energy Laboratory (NREL)about 1 year ago
HydroAir Power Take Off Combined Design ReportSource

The submission is the combined design report for the HydroAir Power Take Off (PTO). CAD drawings, circuit diagrams, design report, test plan, technical specifications and data sheets are included for the Main and auxiliary control cabinets and three-phase-synchronous-motor with a permanent magnet generator (PMG).

0
No licence known
Tags:
AEPAnnual YieldAnnualized energy production AEPBaseframeCADCFDComposite ComponentsCompositesDampingDresser-RandDuctingDuctsFMEAFailure Mode Effect AnalysisGrid-ConnectionGuide VanesHydroAirHydroAir PTOHydroAir Power Take Off PTOHydroAir Power Take Off PTO SystemHydroAir Radial TurbineHydrokineticLCOELevelized Cost of Electricity LCOEMHKMarineNoise levelsOWCOscillating Water Column OWCPMGPTOPerformancePermanent Magnet GeneratorPower Take Off PTOPower to Weight PWR RatioPower-to-Weight PWR RatioPower-to-Weight Ratio PWRRenewable EnergyRotor BladesRotor ShroudSGTSOVShroudShut-Off Valve SOVSiemensSiemens Government TechnologiesSiemens Industry Inc.Siemens Industry Inc. Permanent Magnet Generator PMGSiemens Industry Inc. Variable Frequency Drive VFDThree-Phase-Synchronous-Motor with Permanent MagnetVFDWECWETSWave EnergyWave Energy Converter WECWave Energy Test Site WETSbase framecircuitcolumncritical speeddesigndiagramdrawingsductdynamicseconomicselastic modelelectricalenergygeneratormodelmodelingoptimizationoscillatingoscillating water columnpermanent magnetplanpowerpower take-offpower-take-offreportrotorrotordynamicshaftspecificationsspecstechnicaltechnologytesttest planturbinevariable frequency drivewater
Formats:
PDFDOCX
National Renewable Energy Laboratory (NREL)about 1 year ago
Hydrokinetic Canal Measurements: Inflow Velocity, Wake Flow Velocity, and TurbulenceSource

The dataset consist of acoustic Doppler current profiler (ADCP) velocity measurements in the wake of a 3-meter diameter vertical-axis hydrokinetic turbine deployed in Roza Canal, Yakima, WA, USA. A normalized hub-centerline wake velocity profile and two cross-section velocity contours, 10 meters and 20 meters downstream of the turbine, are presented. Mean velocities and turbulence data, measured using acoustic Doppler velocimeter (ADV) at 50 meters upstream of the turbine, are also presented. Canal dimensions and hydraulic properties, and turbine-related information are also included.

0
No licence known
Tags:
ADCPADVHydrokineticMHKMarineRoza CanalSandiaUS Bureau of ReclamationUSAWAWashingtonYakimaacoustic Doppler current profileracoustic doppler velocimetercanalcharacterizationcontourcross-sectioncurrentdimensionsenergyfield testflowhub-centerlinehydraulic propertiesimpact assessmentinflowmeasurementsnormalizedpowerprofileresourceriverspecificationsspecssurveyturbineturbulencevelocityvelocity deficitvertical axiswakewater velocity
Formats:
CSVZIPDOCX
National Renewable Energy Laboratory (NREL)about 1 year ago
INTEGRATE - Inverse Network Transformations for Efficient Generation of Robust Airfoil and Turbine EnhancementsSource

The INTEGRATE (Inverse Network Transformations for Efficient Generation of Robust Airfoil and Turbine Enhancements) project is developing a new inverse-design capability for the aerodynamic design of wind turbine rotors using invertible neural networks. This AI-based design technology can capture complex non-linear aerodynamic effects while being 100 times faster than design approaches based on computational fluid dynamics. This project enables innovation in wind turbine design by accelerating time to market through higher-accuracy early design iterations to reduce the levelized cost of energy. INVERTIBLE NEURAL NETWORKS Researchers are leveraging a specialized invertible neural network (INN) architecture along with the novel dimension-reduction methods and airfoil/blade shape representations developed by collaborators at the National Institute of Standards and Technology (NIST) learns complex relationships between airfoil or blade shapes and their associated aerodynamic and structural properties. This INN architecture will accelerate designs by providing a cost-effective alternative to current industrial aerodynamic design processes, including: - Blade element momentum (BEM) theory models: limited effectiveness for design of offshore rotors with large, flexible blades where nonlinear aerodynamic effects dominate - Direct design using computational fluid dynamics (CFD): cost-prohibitive - Inverse-design models based on deep neural networks (DNNs): attractive alternative to CFD for 2D design problems, but quickly overwhelmed by the increased number of design variables in 3D problems AUTOMATED COMPUTATIONAL FLUID DYNAMICS FOR TRAINING DATA GENERATION - MERCURY FRAMEWORK The INN is trained on data obtained using the University of Marylands (UMD) Mercury Framework, which has with robust automated mesh generation capabilities and advanced turbulence and transition models validated for wind energy applications. Mercury is a multi-mesh paradigm, heterogeneous CPU-GPU framework. The framework incorporates three flow solvers at UMD, 1) OverTURNS, a structured solver on CPUs, 2) HAMSTR, a line based unstructured solver on CPUs, and 3) GARFIELD, a structured solver on GPUs. The framework is based on Python, that is often used to wrap C or Fortran codes for interoperability with other solvers. Communication between multiple solvers is accomplished with a Topology Independent Overset Grid Assembler (TIOGA). NOVEL AIRFOIL SHAPE REPRESENTATIONS USING GRASSMAN SPACES We developed a novel representation of shapes which decouples affine-style deformations from a rich set of data-driven deformations over a submanifold of the Grassmannian. The Grassmannian representation as an analytic generative model, informed by a database of physically relevant airfoils, offers (i) a rich set of novel 2D airfoil deformations not previously captured in the data , (ii) improved low-dimensional parameter domain for inferential statistics informing design/manufacturing, and (iii) consistent 3D blade representation and perturbation over a sequence of nominal shapes. TECHNOLOGY TRANSFER DEMONSTRATION - COUPLING WITH NREL WISDEM Researchers have integrated the inverse-design tool for 2D airfoils (INN-Airfoil) into WISDEM (Wind Plant Integrated Systems Design and Engineering Model), a multidisciplinary design and optimization framework for assessing the cost of energy, as part of tech-transfer demonstration. The integration of INN-Airfoil into WISDEM allows for the design of airfoils along with the blades that meet the dynamic design constraints on cost of energy, annual energy production, and the capital costs. Through preliminary studies, researchers have shown that the coupled INN-Airfoil + WISDEM approach reduces the cost of energy by around 1% compared to the conventional design approach. This page will serve as a place to easily access all the publications from this work and the repositories for the software developed and released through this project.

0
No licence known
Tags:
AICFDPythonaerodynamicsairfoilartificial intelligenceaxial turbinecomputational fluid dynamicsdesignenergyenergy costinverse designlevelized cost of energymachine learningneural networkneural networkspowertechnologyturbinewind turbine
Formats:
PDFJ0608662022-1098HTML2022-1293
National Renewable Energy Laboratory (NREL)about 1 year ago
Next Generation RivGen Power System: Kvichak River, AK Overwinter Ice StudySource

The University of Alaska Fairbanks (UAF) Alaska Hydrokinetic Energy Research Center was tasked with developing a real-time data telemetry / remote power generation system to monitor frazil ice conditions in the Kvichak River in support of the U.S. Department of Energy funded "Next Generation MHK River Power System Optimized for Performance, Durability and Survivability" project. A real-time telemetry system was requested because of the short time span between the end of the frazil ice season when the instruments would be recovered, limited vessel availability and the project end-date. To meet the project objectives, UAF designed and assembled a remote power/real-time data telemetry system that included an auto start propane generator, a small PV array, a small battery bank and line-of-sight radios as well as two sonar systems to monitor river velocity and water column acoustic backscatter strength. Both sonars included internal batteries for powering the instruments in case of failure of the shore based power system. The sonars, deployed in ~5 m of water on the bed of the Kvichak River, adjacent to the Village of Igiugig, Alaska were tethered to shore via a waterproof armored cable that conveyed power to the subsurface instruments and data from the instruments to the shore based telemetry system. The instruments were programmed to record data internally as well as to transmit data serially over the cables to the shore based system. The system was in-place between November, 2016 and June, 2017. While the real-time data telemetry system was not successful and the remote power generation power system was only partially successful, the system design included sufficient redundant power in the form of internal instrument batteries to enable the collection of nearly three months of overlapping velocity and backscatter data (from November through February) and a record of acoustic backscatter strength spanning the entire ~150 day frazil ice season between November, 2016 and ~April, 2017. This submission includes the overwinter ice study plan, dataset, and final report. The dataset includes modeled water velocity, discharge, and measured water velocity and acoustic backscatter strength in winter 2016-17 from the Kvichak River at the Village of Igiugig, Alaska, USA.

0
No licence known
Tags:
ADCPAKAlaskaCECEAHydrokineticIgiugigKvichak RiverMHKMarineRivGenSWIPacousticacoustic doppler current profileraxialaxisbottom mountedconditionscross flow turbinecurrentdata collectiondopplerdurabilityenergyenvironmentequipmentfiberglass tripodfrazilhorizontalicemonitoringperformanceplanpowerprofilerreal-timeremoteriversea spidershallowstudystudy plansurvivabilitysystemtelemetryturbinewinter
Formats:
PDFZIP
National Renewable Energy Laboratory (NREL)about 1 year ago
ORPC RivGen Hydrokinetic Turbine Wake CharacterizationSource

Field measurements of mean flow and turbulence parameters at the Kvichak river prior to and after the deployment of ORPC's RivGen hydrokinetic turbine. Data description and turbine wake analysis are presented in the attached manuscript "Wake measurements from a hydrokinetic river turbine" by Guerra and Thomson (recently submitted to Renewable Energy). There are three data sets: NoTurbine (prior to deployment), Not_Operational_Turbine (turbine underwater, but not operational), and Operational_Turbine. The data has been quality controlled and organized into a three-dimensional grid using a local coordinate system described in the paper. All data sets are in Matlab format (.mat). Variables available in the data sets are: qx: X coordinate matrix (m) qy: Y coordinate matrix (m) z : z coordinate vector (m) lat : grid cell latitude (degrees) lon: grid cell longitude (degrees) U : velocity magnitude (m/s) Ux: x velocity (m/s) Vy: y velocity (m/s) W: vertical velocity (m/s) Pseudo_beam.b_i: pseudo-along beam velocities (i = 1 to 4) (m/s) (structure with raw data within each grid cell) beam5.b5: 5th-beam velocity (m/s) (structure with raw data within each grid cell) tke: turbulent kinetic energy (m2/s2) epsilon: TKE dissipation rate (m2/s3) Reynolds stresses: uu, vv, ww, uw, vw (m2/s2) Variables from the Not Operational Turbine data set are identified with _T Variables from the Operational Turbine data set are identified with _TO

0
No licence known
Tags:
3DCECHydrokineticMHKMarineMatlabORPCReynolds stressRivGencharacterizationcross flow turbinecross-flowcross-flow turbinecurrentdata collectionenergyenergy lossevolutionfield testflowmean flowparametersresourceriverturbineturbulencevelocitywakewake data
Formats:
PDFmat
National Renewable Energy Laboratory (NREL)about 1 year ago
Original HANNA Mono-Radial Turbine Post Access ReportSource

Final report on a TEAMER study undertaken by Alden Research Laboratory for the Mono-radial turbine invented by John Clark Hanna DBA: Hanna Wave Energy Primary Drives. The study is a predictive numerical and CFD (computational fluid dynamics) report of the mentioned Hanna Mono-Radial Turbine. The device is an impulse-type mono-radial air turbine PTO for wave energy conversion. The turbine is self-rectified, meaning that it spins in one direction only while capturing the bi-directional air flows developed within an OWC (Oscillating Water Column) system.

0
No licence known
Tags:
CFDHydrokineticMHKMarineOWCPTOTEAMERWECcomputational fluid dynamicsenergyfluid simulationmodelmono-radialmonoradialnumerical modelnumerical studyoscillating water columnpowerpower take-offpower takeoffradialreportself rectifiedself-rectifiedsimulationturbinewave energy converter
Formats:
DOCX
National Renewable Energy Laboratory (NREL)about 1 year ago
RANS Simulation RRF of Single Full Scale DOE RM1 MHK TurbineSource

Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single full scale DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. In this case study taking advantage of the symmetry of the DOE RM1 geometry, only half of the geometry is modeled using (Single) Rotating Reference Frame model [RRF]. In this model RANS equations, coupled with k-\omega turbulence closure model, are solved in the rotating reference frame. The actual geometry of the turbine blade is included and the turbulent boundary layer along the blade span is simulated using wall-function approach. The rotation of the blade is modeled by applying periodic boundary condition to sets of plane of symmetry. This case study simulates the performance and flow field in both the near and far wake of the device at the desired operating conditions. The results of these simulations showed good agreement to the only publicly available numerical simulation of the device done in the NREL. Please see the attached paper.

0
No licence known
Tags:
ANSYSCECCFDDOE RM1FLUENTHAHTHorizontal Axis Hydrokinetic TurbineHydrokineticMHKMarineNNMRECNavier-StokesPMECRANSRM1RRFReynoldsSimulationSingle Rotating Refrence modelTidalTurbulenceanalysisaxialaxial flow turbineaxiscomputational fluid dynamicsenergyexperimentalflowhorizontalhorizontal axismodelmodelingnumericalpowerquantitativereference modelrotating reference framerotortechnologyturbinewind
Formats:
PDFcas
National Renewable Energy Laboratory (NREL)about 1 year ago
RANS Simulation RRF of Single Lab-Scaled DOE RM1 MHK TurbineSource

Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. The lab-scaled DOE RM1 is a re-design geometry, based of the full scale DOE RM1 design, producing same power output as the full scale model, while operating at matched Tip Speed Ratio values at reachable laboratory Reynolds number (see attached paper). In this case study taking advantage of the symmetry of lab-scaled DOE RM1 geometry, only half of the geometry is models using (Single) Rotating Reference Frame model [RRF]. In this model RANS equations, coupled with k-\omega turbulence closure model, are solved in the rotating reference frame. The actual geometry of the turbine blade is included and the turbulent boundary layer along the blade span is simulated using wall-function approach. The rotation of the blade is modeled by applying periodic boundary condition to sets of plane of symmetry. This case study simulates the performance and flow field in the near and far wake of the device at the desired operating conditions. The results of these simulations were validated against in-house experimental data. Please see the attached paper.

0
No licence known
Tags:
ANSYSBEMCECCFDDOE RM1FEAHAHTHydrokineticMHKMarineNNMRECNavier-StokesPMECRANSRM1RRFReynoldsSimulationSingle Rotating Refrence modelValidationaxialaxial flow turbineaxisblade element modelcomputational fluid dynamicsenergyhorizontalhorizontal axismodelmodelingpowerreference modelrotating reference framerotorscale-modeltechnologytidalturbinewind turbine
Formats:
HTMLcasdat
National Renewable Energy Laboratory (NREL)about 1 year ago
RANS Simulation VBM of Single Full Scale DOE RM1 MHK TurbineSource

Attached are the .cas and .dat files along with the required User Defined Functions (UDFs) and look-up table of lift and drag coefficients for Reynolds Averaged Navier-Stokes (RANS) simulation of a single full scale DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. In this case study the flow field around and in the wake of the full scale DOE RM1 turbine is simulated using Blade Element Model (a.k.a Virtual Blade Model [VBM]) by solving RANS equations coupled with k-\omega turbulence closure model. It should be highlighted that in this simulation the actual geometry of the rotor blade is not modeled. The effect of turbine rotating blades are modeled using the Blade Element Theory. This simulation provides an accurate estimate for the performance of device and structure of it's turbulent far wake. Due to the simplifications implemented for modeling the rotating blades in this model, VBM is limited to capture details of the flow field in near wake region of the device.

0
No licence known
Tags:
ANSYSBEMBlade Element ModelCECCFDDOE RM1HAHTHydrokineticMHKMarineNNMRECNavier-StokesPMECRANSRM1ReynoldsSImulationTidalTurbulenceVBMVirtual Blade Modelaxialaxial flow turbineaxiscomputational fluid dynamicsenergyfluenthorizontalmodelpowerreference modelrotortechnologyturbinevirtual bladewind
Formats:
dathcscmcasPDF
National Renewable Energy Laboratory (NREL)about 1 year ago
RANS Simulation VBM of Single Lab Scaled DOE RM1 MHK TurbineSource

Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. The lab-scaled DOE RM1 is a re-design geometry, based of the full scale DOE RM1 design, producing same power output as the full scale model, while operating at matched Tip Speed Ratio values at reachable laboratory Reynolds number (see attached paper). In this case study the flow field around and in the wake of the lab-scaled DOE RM1 turbine is simulated using Blade Element Model (a.k.a Virtual Blade Model [VBM]) by solving RANS equations coupled with k-\omega turbulence closure model. It should be highlighted that in this simulation the actual geometry of the rotor blade is not modeled. The effect of turbine rotating blades are modeled using the Blade Element Theory. This simulation provides an accurate estimate for the performance of device and structure of it's turbulent far wake. Due to the simplifications implemented for modeling the rotating blades in this model, VBM is limited to capture details of the flow field in near wake region of the device. The required User Defined Functions (UDFs) and look-up table of lift and drag coefficients are included along with the .cas and .dat files.

0
No licence known
Tags:
BEMBlade element modelCECCFDExperimentExperimentalHAHTHorizontal Axis Hydrokinetic TurbineHydrokineticMHKMarineNNMRECNavier-StokesPMECRANSRM1RRFReynoldsSimulationTidalUDFVBMValidationaxialaxial flow turbineaxiscomputational fluid dynamicsenergyhorizontalmodelmodelingpowerreference modelrotating reference framerotortechnologyturbineuser defined functionvirtual bladevirtual blade model
Formats:
pdf?sequence=1&isAllowed=ydatcscmhcas
National Renewable Energy Laboratory (NREL)about 1 year ago
Reference Model 1 Cost Breakdown (RM1: Tidal Current Turbine)Source

Contains the Reference Model 1 (RM1) spreadsheets with the cost breakdown structure (CBS) for the levelized cost of energy (LCOE) calculations for a single RM1 device and multiple unit arrays. These spreadsheets are contained within an XLSX file and a spreadsheet editor such as Microsoft Excel is needed to open the file. This data was generated upon completion of the project on September 30, 2014. The Reference Model Project (RMP), sponsored by the U.S. Department of Energy (DOE), was a partnered effort to develop open-source MHK point designs as reference models (RMs) to benchmark MHK technology performance and costs, and an open-source methodology for design and analysis of MHK technologies, including models for estimating their capital costs, operational costs, and levelized costs of energy. The point designs also served as open-source test articles for university researchers and commercial technology developers. The RMP project team, led by Sandia National Laboratories (SNL), included a partnership between DOE, three national laboratories, including the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), and Oak Ridge National Laboratory (ORNL), the Applied Research Laboratory of Penn State University, and Re Vision Consulting. Reference Model 1 (RM1) is a dual variable-speed variable-pitch (VSVP) axial-flow tidal turbine device, designed for the Tacoma Narrows tidal current energy resource site in Puget Sound, Washington. RM1 comprises a monopile foundation and a crossarm assembly to mount the two rotors. The cross-arm assembly is nearly neutrally buoyant so the attached rotors can be recovered and redeployed with a minimal amount of lifting crane capacity; therefore, the design minimizes the handling requirements during deployment and recovery, which reduces overall cost in all O&M activities including access to the power conversion chain (PCC).

0
No licence known
Tags:
CBSHydrokineticLCOEMHKMarineRM1Reference ModelReference Model 1Reference Model Projectaxial flow turbinecost breakdown structureenergymarine energypowertechnologytidal currenttidal energytidal turbineturbine
Formats:
HTMLXLSX
National Renewable Energy Laboratory (NREL)about 1 year ago
Reference Model 1 Scaled Geometry (RM1: Tidal Current Turbine)Source

Contains the Reference Model 1 (RM1) scaled scale geometry files of the Tidal Current Turbine, developed by the Reference Model Project (RMP). These scaled geometry files are saved as SolidWorks assembly, IGS, and STEP files, and require a CAD program to view. The scaled RM1 device was tested at the Saint Anthony Falls Laboratory (SAFL) at the University of Minnesota flume, details of which are described in the included journal article. The scale of the geometries included in this submission are at a 1:40 scale compared to the full scale geometry. This data was generated upon completion of the project on September 30, 2014. The Reference Model Project (RMP), sponsored by the U.S. Department of Energy (DOE), was a partnered effort to develop open-source MHK point designs as reference models (RMs) to benchmark MHK technology performance and costs, and an open-source methodology for design and analysis of MHK technologies, including models for estimating their capital costs, operational costs, and levelized costs of energy. The point designs also served as open-source test articles for university researchers and commercial technology developers. The RMP project team, led by Sandia National Laboratories (SNL), included a partnership between DOE, three national laboratories, including the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), and Oak Ridge National Laboratory (ORNL), the Applied Research Laboratory of Penn State University, and Re Vision Consulting. Reference Model 1 (RM1) is a dual variable-speed variable-pitch (VSVP) axial-flow tidal turbine device, designed for the Tacoma Narrows tidal current energy resource site in Puget Sound, Washington. RM1 comprises a monopile foundation and a crossarm assembly to mount the two rotors. The cross-arm assembly is nearly neutrally buoyant so the attached rotors can be recovered and redeployed with a minimal amount of lifting crane capacity; therefore, the design minimizes the handling requirements during deployment and recovery, which reduces overall cost in all O&M activities including access to the power conversion chain (PCC).

0
No licence known
Tags:
CADCFDHydrokineticMHKMarineRM1Reference Model 1Reference Model ProjectSOLIDWORKSaxial flow turbinedual rotorenergyexperimentocean currentspowerreference modelscaled geometryscaled testtechnologytesttidal currenttidal energy convertertidal streamstidal turbineturbine
Formats:
HTMLSTEPIGSZIP
National Renewable Energy Laboratory (NREL)about 1 year ago
Reference Model 2 Cost Breakdown (RM2: River Current Turbine)Source

Contains the Reference Model 2 (RM2) spreadsheets with the cost breakdown structure (CBS) for the levelized cost of energy (LCOE) calculations for a single RM2 device and multiple unit arrays. These spreadsheets are contained within an XLSX file and a spreadsheet editor such as Microsoft Excel is needed to open the file. This data was generated upon completion of the project on September 30, 2014. The Reference Model Project (RMP), sponsored by the U.S. Department of Energy (DOE), was a partnered effort to develop open-source MHK point designs as reference models (RMs) to benchmark MHK technology performance and costs, and an open-source methodology for design and analysis of MHK technologies, including models for estimating their capital costs, operational costs, and levelized costs of energy. The point designs also served as open-source test articles for university researchers and commercial technology developers. The RMP project team, led by Sandia National Laboratories (SNL), included a partnership between DOE, three national laboratories, including the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), and Oak Ridge National Laboratory (ORNL), the Applied Research Laboratory of Penn State University, and Re Vision Consulting. Reference Model 2 (RM2) is a variable speed dual-rotor cross-flow river turbine that is deployed at the water?s surface. It was designed for deployment at a reference site modeled after a reach in the Mississippi River near Baton Rouge, Louisiana. The rotors are anchored to a two-pontoon vessel platform. Surface deployment of the turbine minimizes the handling requirements during deployment and recovery and reduces overall costs for all O&M activities, including allowing for easy access to the power conversion chain (PCC). The design (two rotors per platform) also reduces the environmental footprint and associated environmental compliance costs.

0
No licence known
Tags:
CBSCECHydrokineticLCOEMHKMarineRM2Reference ModelReference Model 2Reference Model Projectcost breakdown structurecross flow turbinecurrent energyenergypowerriverriver currentriver current turbineturbine
Formats:
HTMLXLSX
National Renewable Energy Laboratory (NREL)about 1 year ago
Reference Model 2 Scaled Geometry (RM2: River Current Turbine)Source

Contains the Reference Model 2 (RM2) scaled scale geometry files of the River Current Turbine, developed by the Reference Model Project (RMP). These scaled geometry files are saved as SolidWorks assembly, IGS, and STEP files, and require a CAD program to view. The scaled RM2 device was tested at the Saint Anthony Falls Laboratory (SAFL) at the University of Minnesota flume. The scale of the geometries included in this submission are at a 1:15 scale compared to the full scale geometry. This data was generated upon completion of the project on September 30, 2014. The Reference Model Project (RMP), sponsored by the U.S. Department of Energy (DOE), was a partnered effort to develop open-source MHK point designs as reference models (RMs) to benchmark MHK technology performance and costs, and an open-source methodology for design and analysis of MHK technologies, including models for estimating their capital costs, operational costs, and levelized costs of energy. The point designs also served as open-source test articles for university researchers and commercial technology developers. The RMP project team, led by Sandia National Laboratories (SNL), included a partnership between DOE, three national laboratories, including the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), and Oak Ridge National Laboratory (ORNL), the Applied Research Laboratory of Penn State University, and Re Vision Consulting. Reference Model 2 (RM2) is a variable speed dual-rotor cross-flow river turbine that is deployed at the water?s surface. It was designed for deployment at a reference site modeled after a reach in the Mississippi River near Baton Rouge, Louisiana. The rotors are anchored to a two-pontoon vessel platform. Surface deployment of the turbine minimizes the handling requirements during deployment and recovery and reduces overall costs for all O&M activities, including allowing for easy access to the power conversion chain (PCC). The design (two rotors per platform) also reduces the environmental footprint and associated environmental compliance costs.

0
No licence known
Tags:
2D drawings3D Design3D modelCADHydrokineticMHKMarineRM2Reference Model 2Reference Model ProjectSOLIDWORKSaxial flow turbineenergymodelpowerreference modelriverriver currenttechnical drawingstechnologyturbine
Formats:
HTMLSTEPIGSZIP
National Renewable Energy Laboratory (NREL)about 1 year ago
Reference Model 4 Full Scale Geometry (RM4: Ocean Current Turbine)Source

Contains the Reference Model 4 (RM4) full scale geometry files of the Ocean Current Turbine, developed by the Reference Model Project (RMP). These full scale geometry files are saved as SolidWorks assembly, IGS, X_T, and STEP files, and require a CAD program to view. This data was generated upon completion of the project on September 30, 2014. The Reference Model Project (RMP), sponsored by the U.S. Department of Energy (DOE), was a partnered effort to develop open-source MHK point designs as reference models (RMs) to benchmark MHK technology performance and costs, and an open-source methodology for design and analysis of MHK technologies, including models for estimating their capital costs, operational costs, and levelized costs of energy. The point designs also served as open-source test articles for university researchers and commercial technology developers. The RMP project team, led by Sandia National Laboratories (SNL), included a partnership between DOE, three national laboratories, including the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), and Oak Ridge National Laboratory (ORNL), the Applied Research Laboratory of Penn State University, and Re Vision Consulting. Reference Model 4 (RM4) is a "flying-wing" ocean current turbine concept intended for deployment in the Gulf Stream off the southeast coast of Florida. The RM4 device has four rotors, with a rotorless center nacelle housing the power electronics, attached on a straight wing 120 m long. The device is designed to be submerged ~50 m below the surface and is moored to the seabed. The RM4 uses buoyancy within the wing and the five nacelles to maintain its position in the water column. Each rotor has a diameter of 33 m and has a 1-MW power rating, yielding a total device rated power of 4 MW. The rotors on the left and right side of the wing rotate in opposite directions in order to balance the torque applied to the device. The rotorless center nacelle housing the power electronics serves to condition the power generated by the rotors before it is delivered to the grid.

0
No licence known
Tags:
3D modelCADCECHydrokineticMHKMarineRM4Reference Model ProjectSOLIDWORKSaxial flow turbineenergymodelocean currentocean current energypowerreference modelturbine
Formats:
HTMLZIPSTEPIGS
National Renewable Energy Laboratory (NREL)about 1 year ago
Tidal Currents Turbine Parametric StudySource

This is an exercise in optimizing the flow through a shrouded axial turbine to have the least resistance and to have optimal output and torque and energy. In this study, different variates of the original geometry of the current turbine designed by Hydrokinetic Energy Corp. (HEC) were evaluated for energy efficiency using Computational Fluid Dynamics (CFD). The objective was accomplished by a parametric study of the key geometric parameters for the shroud, the diffuser, and the hub.

0
No licence known
Tags:
CECCFDCFD analysisDesign TestingHECPresentationReportTEAMERaxial flow turbineaxial turbinecurrentdiffuserefficiencyenergygeometrichubmarinemodelingparametersparametricresources characterizationshroudshrouded axial flow turbinetechnologytidaltidal energyturbine
Formats:
PDFPPTX
National Renewable Energy Laboratory (NREL)about 1 year ago
University of Miami Coupled Model (UMCM) for Hurricanes Ike and SandySource

The University of Miami Coupled Model (UMCM) is a coupled model that integrates atmospheric, wave, and ocean components to produce wind, wave, and current data. Atmospheric data is produced using the [Weather Research and Forecasting model](https://www.mmm.ucar.edu/weather-research-and-forecasting-model) (WRF), Wave data is produced using the [University of Miami Wave Model](https://umwm.org/) (UMWM), While ocean current data is produced using the [HYbrid Coordinate Ocean Model](https://www.hycom.org/) (HYCOM). The time resolution for each model run is as follows: Hurricane Ike -> 1 sample/hour from 9/8/2008 12:00:00 UTC to 9/12/2008 6:00:00 UTC -> 1 sample/10 minutes from 9/12/2008 6:00:00 UTC to 9/13/2008 9:00:00 UTC Hurricane Sandy -> 1 sample/10 minutes from 10/28/2012 00:10:00 UTC to 10/31/2012 00:00:00 UTC

0
No licence known
Tags:
AtmosphericCoupled ModelCurrentHYCOMHurricanesIkeOceanSandyUMCMUMWMUniversity of Miami Coupled ModelWaveblade pitch controlboundary value problemdirectional wave spectraenergyhurricanehydrodynamicloadingoffshore windpowerreaction forcessimulationswelltower bendingturbinewave age criterionwave theorywindwind seas
Formats:
PDFmdHTML
National Renewable Energy Laboratory (NREL)about 1 year ago
Wind Turbine - NREL - GE 1.5MW SLE wind turbine - Reviewed DataSource

**Overview** This dataset is intended to be a public resource for anyone conducting wind turbine noise research. The data in this set contain noise spectra and equivalent sound pressure levels at 11 measurement stations. The dataset also contains wind turbine operational data and meteorological data from a met mast directly upstream of the wind turbine. **Data Quality** Data were filtered to include only observations when wind was blowing from the prevailing wind direction of 285° +/- 15°.

0
No licence known
Tags:
Aeroacoustic Assessment of Wind Plant ControlsGE 1.5MW SLE wind turbineNRELReviewed DataWind Turbinea2eaawpcatmosphere to electronsb0eereturbinewetowindz01
Formats:
b0
National Renewable Energy Laboratory (NREL)about 1 year ago
Wind Turbine - SWiFT southeast - WTGa1 - Reviewed DataSource

**Overview** Scaled Wind Farm Technology (SWiFT) Facility meteorological tower (MET), turbine, and Technical University of Denmark (DTU) SpinnerLidar data acquired on 20161216 UTC during a neutral atmospheric boundary layer inflow at a single focus distance of 2.5 D (D=27 m). **Data Quality** Data information is provided in uploaded documentation: *SWiFT Wake Steering Instrumentation and Data Processing* (PDF).

0
No licence known
Tags:
Reviewed DataSWiFT southeastWTGa1Wake Steering ExperimentWind Turbinea2eatmosphere to electronsb0eereturbinewakewetowindz01
Formats:
b0
National Renewable Energy Laboratory (NREL)about 1 year ago