Open Net Zero logo

Filters

Formats:
Select...
Licenses:
Select...
Organizations:
Select...
Tags:
Select...
Shared:
Sensitivities:
Datasets
L o a d i n g
Chemical Transport Model Simulations of Organic Aerosol in Southern California: Model Evaluation and Gasoline and Diesel Source ContributionsSource

Gasoline- and diesel-fueled engines are ubiquitous sources of air pollution in urban environments. They emit both primary particulate matter and precursor gases that react to form secondary particulate matter in the atmosphere. In this work, we use experimentally derived inputs and parameterizations to predict concentrations and properties of organic aerosol (OA) from mobile sources in southern California using a three-dimensional chemical transport model, the Community Multiscale Air Quality Model (CMAQ). The updated model includes secondary organic aerosol (SOA) formation from unspeciated intermediate volatility organic compounds (IVOC). Compared to the treatment of OA in the traditional version of CMAQ, which is commonly used for regulatory applications, the updated model did not significantly alter the predicted OA mass concentrations but it did substantially improve predictions of OA sources and composition (e.g., POA-SOA split), and ambient IVOC concentrations. The updated model, despite substantial differences in emissions and chemistry, performs similar to a recently released research version of CMAQ. Mobile sources are predicted to contribute about 30–40 % of the OA in southern California (half of which is SOA), making mobile sources the single largest source contributor to OA in southern California. The remainder of the OA is attributed to non-mobile anthropogenic sources (e.g., cooking, biomass burning) with biogenic sources contributing less than 5 % to the total OA. Gasoline sources are predicted to contribute about thirteen times more OA than diesel sources; this difference is driven by differences in SOA production. Model predictions highlight the need to better constrain multi-generational oxidation reactions in chemical transport models. This dataset is associated with the following publication: Jathar, S., M. Woody, H. Pye, K. Baker, and A. Robinson. Chemical transport model simulations of organic aerosol in southern California: model evaluation and gasoline and diesel source contributions. Atmospheric Chemistry and Physics. Copernicus Publications, Katlenburg-Lindau, GERMANY, 17: 4305-4318, (2017).

0
No licence known
Tags:
aerosolcaliforniacalnexdieselgasolinejatharsecondary organic aerosolsoavehicles
Formats:
ZIP
United State Environmental Protection Agencyabout 1 year ago
Data For FiguresSource

This dataset contains data presented in the figures of the paper "Semivolatile POA and parameterized total combustion SOA in CMAQv5.2: impacts on source strength and partitioning" published in Atmospheric Chemistry and Physics. It also links to the data archive of field observations. This dataset is associated with the following publication: Murphy, B., M. Woody, J. Jimenez, A.M. Carlton, P. Hayes, S. Liu, N. Ng, L. Russell, A. Setyan, L. Xu, J. Young, R. Zaveri, Q. Zhang, and H. Pye. Semivolatile POA and parameterized total combustion SOA in CMAQv5.2: impacts on source strength and partitioning. Atmospheric Chemistry and Physics. Copernicus Publications, Katlenburg-Lindau, GERMANY, 17: 11107-11133, (2017).

0
No licence known
Tags:
agingcalnexcarescmaqorganic aerosolparticulate mattersoasvolatility
Formats:
CSV
United State Environmental Protection Agencyabout 1 year ago