Open Net Zero logo
Chemical Transport Model Simulations of Organic Aerosol in Southern California: Model Evaluation and Gasoline and Diesel Source Contributions
OwnerUnited State Environmental Protection Agency - view all
Update frequencyunknown
Last updatedabout 1 year ago
Format
Overview

Gasoline- and diesel-fueled engines are ubiquitous sources of air pollution in urban environments. They emit both primary particulate matter and precursor gases that react to form secondary particulate matter in the atmosphere. In this work, we use experimentally derived inputs and parameterizations to predict concentrations and properties of organic aerosol (OA) from mobile sources in southern California using a three-dimensional chemical transport model, the Community Multiscale Air Quality Model (CMAQ). The updated model includes secondary organic aerosol (SOA) formation from unspeciated intermediate volatility organic compounds (IVOC). Compared to the treatment of OA in the traditional version of CMAQ, which is commonly used for regulatory applications, the updated model did not significantly alter the predicted OA mass concentrations but it did substantially improve predictions of OA sources and composition (e.g., POA-SOA split), and ambient IVOC concentrations. The updated model, despite substantial differences in emissions and chemistry, performs similar to a recently released research version of CMAQ. Mobile sources are predicted to contribute about 30–40 % of the OA in southern California (half of which is SOA), making mobile sources the single largest source contributor to OA in southern California. The remainder of the OA is attributed to non-mobile anthropogenic sources (e.g., cooking, biomass burning) with biogenic sources contributing less than 5 % to the total OA. Gasoline sources are predicted to contribute about thirteen times more OA than diesel sources; this difference is driven by differences in SOA production. Model predictions highlight the need to better constrain multi-generational oxidation reactions in chemical transport models. This dataset is associated with the following publication: Jathar, S., M. Woody, H. Pye, K. Baker, and A. Robinson. Chemical transport model simulations of organic aerosol in southern California: model evaluation and gasoline and diesel source contributions. Atmospheric Chemistry and Physics. Copernicus Publications, Katlenburg-Lindau, GERMANY, 17: 4305-4318, (2017).

aerosolcaliforniacalnexdieselgasolinejatharsecondary organic aerosolsoavehicles
Additional Information
KeyValue
dcat_modified2017-01-01
dcat_publisher_nameU.S. EPA Office of Research and Development (ORD)
guidA-tmq4-532
ib1_trust_framework[]
language
Files
  • ZIP
    2990daa0-b4fc-46bb-a275-e30655e8c72e
Share this Dataset
chemical-transport-model-simulations-of-organic-aerosol-in-southern-california-model-evaluation
Access and Licensing
Access conditionsAccess control: Unknown
License conditionsLicense: