Open Net Zero logo

Filters

Formats:
Select...
Licenses:
Select...
Organizations:
Select...
Tags:
Select...
Shared:
Sensitivities:
Datasets
L o a d i n g
Agricultural Research Service Culture Collection (NRRL - Northern Regional Research Laboratory) Database

The ARS Culture Collection is one of the largest public collections of microorganisms in the world, containing approximately 93,000 strains of bacteria and fungi. The collection is split into subcollections of molds, prokaryotes, and yeasts. In addition, the online catalog is searchable by genus, species, subvar type, and subspecies. The collection is housed within the Mycotoxin Prevention and Applied Microbiology Research Unit at the National Center for Agricultural Utilization Research in Peoria, Illinois. The scientists and staff of the ARS Culture Collection conduct and facilitate microbiological research that advances agricultural production, food safety, public health, and economic development. These goals are pursued through in-house research that improves understanding and utilization of microbiological diversity and through efforts to enhance the value and accessibility of microbial accessions in the Agricultural Research Service Culture Collection.

0
No licence known
Tags:
BacteriaBiologicalFood SafetyNorthern Regional Research Laboratorycellculturesfungiliving cellmicrobiologymoldsprokaryotespublic healthtissuetissue culturesyeasts
Formats:
HTML
United States Department of Agriculture10 months ago
Recovery of Rare Earth Elements from Geothermal Fluids through Bacterial Cell Surface AdsorptionSource

We summarized the FY17 and part of FY18 results of the analysis of the effect of several parameters (e.g., total dissolved solids, specific competing metals, pH, and temperature) on REE recovery from geothermal brine in a manuscript that was submitted to Environmental Science & Technology. In this manuscript, we investigate biosorption as a potential means of recovering REEs from geothermal fluids, a low-grade but abundant REE source. We have previously engineered E. coli to express lanthanide binding tags (LBTs) on the cell surface and the resulting strain showed an increase in both REE adsorption capacity and selectivity. Here we examined how REE adsorption by the engineered E. coli is affected by various geochemical factors relevant to geothermal fluids, including total dissolved solids (TDS), temperature, pH, and the presence of competing trace metals.

0
No licence known
Tags:
E. coliLBTREEadsorptionbacteriabioadsorptionbioengineeringbiosorptionbrinecellelementsenergyfactorsfluidgeochemicalgeochemistrygeofluidgeothermallanthanide bindingmicrobemicrobialrare earthsurfacetag
Formats:
DOCX
National Renewable Energy Laboratory (NREL)about 1 year ago