Open Net Zero logo

Filters

Formats:
Select...
Licenses:
Select...
Organizations:
Select...
Tags:
Select...
Shared:
Sensitivities:
Datasets
L o a d i n g
Annual Count of Frost Days - ProjectionsSource

Annual Count of Frost Days (annual number of days where the minimum daily temperature is below 0 °C), projections for a range of future warming levels from UKCP18. Provided on a 12km BNG grid.Frost days have large negative impacts on crops, transportation, and energy demand. While there is a general reduction in frost days across the country, different administrative regions of the UK show a variation in the magnitude of the projected decrease in the numbers of frost days. There is a steady rate of decrease in frost days per year with global mean warming in all UK regions. See also Icing Days, which is a similar metric but measures more severe cold weather impacts.This data contains a field for each warming level. They are named 'Frost Days', the warming level, and 'upper' 'median' or 'lower' as per the description below. E.g. 'Frost Days 2.5 median' is the median value for the 2.5°C projection. Decimal points are included in field aliases but not field names e.g. 'Frost Days 2.5 median' is 'FrostDays_25_median'. Data defaults to displaying 'Frost Days 2.0°C median' values, use 'change style' to display other values.The warming levels used are 1.5°C, 2.0°C, 2.5°C, 3.0°C, 4.0°C, and two baselines are also provided for 1981-2000 (corresponding to 0.51°C warming) and 2000-2017 (corresponding to 0.835°C warming).What is the data?The data is from the UKCP18 regional projections using the RCP8.5 scenario. Rather than giving projections for a specific date under different scenarios, one scenario is used and projections are given at the different warming levels. So this data shows the expected number of Frost Days should these warming levels be reached, at the time that the warming level is reached.For full details, see 'Future Changes to high impact weather in the UK'. HM Hanlon, D Bernie, G Carigi and JA Lowe. Climatic Change, 166, 50 (2021) https://doi.org/10.1007/s10584-021-03100-5What do the 'median', 'upper', and 'lower' values mean?This scenario is run as 12 separate ensemble members. To select which ensemble members to use, a single value was taken from each ensemble member - the mean of a 21yr period centred on the year the warming level was reached. They were then ranked in order from lowest to highest.The 'lower' fields are the second lowest ranked ensemble member.The 'higher' fields are the second highest ranked ensemble member.The 'median' fields are the median average of all ensemble members.This gives a median average value, and a spread of the ensemble members indicating the level of uncertainty in the projections.This dataset forms part of the Met Office’s Climate Data Portal service. This service is currently in Beta. We would like your help to further develop our service, please send us feedback via the site - https://climate-themetoffice.hub.arcgis.com/

0
No licence known
Tags:
Met OfficeUKUKCPUKCP18airfrostairfrost daysannualclimatecountdaysfrostfrost daysprojectionstemperature
Formats:
HTMLArcGIS GeoServices REST APICSVGeoJSONZIPKML
Met Officeover 1 year ago
Annual Count of Frost Days 1991-2020Source

Annual number of frost days (days where minimum temperature falls below 0C) averaged over 1991-2020, provided on a 2km BNG grid.This data contains a field for the average over the period, named 'Airfrost Days'.Data source:HadUK-Grid v1.1.0.0 (downloaded 11/03/2022)More about HadUK-Grid - https://www.metoffice.gov.uk/research/climate/maps-and-data/data/haduk-grid/haduk-grid This dataset forms part of the Met Office’s Climate Data Portal service. This service is currently in Beta. We would like your help to further develop our service, please send us feedback via the site - https://climate-themetoffice.hub.arcgis.com/

0
No licence known
Tags:
1991-2020AverageHadUKMet OfficeUKairfrostairfrost daysannualclimatedaysfrostfrost daysminimumtemperature
Formats:
HTMLArcGIS GeoServices REST APICSVGeoJSONZIPKML
Met Officeover 1 year ago
CoCoRaHS Volunteer Precipitation Data

Each time a rain, hail or snow storm passes, volunteers take measurements of precipitation from as many locations as possible. These precipitation reports are then recorded on our Web site www.cocorahs.org. The data are then displayed and organized for many of our end users to analyze and apply to daily situations ranging from water resource analysis and severe storm warnings to neighbors comparing how much rain fell in their backyards.

0
License not specified
Tags:
evapotranspirationfrostmapsprecipitationsoil moistureweather
Formats:
HTML
CoCoRaHSabout 1 year ago
Evapotranspiration, Irrigation, Dew/frost - Water Balance Data for The Bushland, Texas Alfalfa Datasets

This dataset contains water balance data for each year when alfalfa was grown at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU) research weather station, Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL). Alfalfa was grown on two large, precision weighing lysimeters, each in the center of a 4.44 ha square field in 1996 through 1999. Irrigation was by linear move sprinkler system. Irrigations were managed to replenish soil water used by the crop on a weekly or more frequent basis as determined by soil profile water content readings made with a neutron probe to 2.4-m depth in the field. The weighing lysimeters were used to measure relative soil water storage to 0.05 mm accuracy at 5-minute intervals, and the 5-minute change in soil water storage was used along with precipitation and irrigation amounts to calculate crop evapotranspiration (ET), which is reported at 15-minute intervals. Because the large (3 m by 3 m surface area) weighing lysimeters are better rain gages than are tipping bucket gages, the 15-minute precipitation data are derived for each lysimeter from changes in lysimeter mass. The land slope is <0.3% and flat. The water balance data consist of 15-minute and daily amounts of evapotranspiration (ET), dew/frost fall, precipitation (rain/snow), irrigation, scale counterweight adjustment, and emptying of drainage tanks, all in mm. The values are the result of a rigorous quality control process involving algorithms for detecting dew/frost accumulations, and precipitation (rain and snow). Changes in lysimeter mass due to emptying of drainage tanks, counterweight adjustment, maintenance activity, and harvest are accounted for such that ET values are minimally affected. The ET data should be considered to be the best values offered in these datasets. Even though ET data are also presented in the "lysimeter" datasets, the values herein are the result of a more rigorous quality control process. Dew and frost accumulation varies from year to year and seasonally within a year, and it is affected by lysimeter surface condition [bare soil, tillage condition, residue amount and orientation (flat or standing), etc.]. Particularly during winter and depending on humidity and cloud cover, dew and frost accumulation sometimes accounts for an appreciable percentage of total daily ET. These datasets originate from research aimed at determining crop water use (ET), reference "tall crop" ET, crop coefficients for use in ET-based irrigation scheduling based on a reference ET, crop growth, yield, harvest index, and crop water productivity as affected by irrigation method, timing, amount (full or some degree of deficit), agronomic practices, cultivar, and weather. Prior publications have focused on alfalfa ET, crop coefficients, crop water productivity reference "tall crop" ET, alternative methods of estimating reference ET from weather data. Crop coefficients have been used by ET networks. The data have utility for testing simulation models of crop ET, growth, and yield.

0
No licence known
Tags:
EvapotranspirationNP211alfalfadetailed precipitationdew accumulationfrostirrigation
Formats:
XLSX
United States Department of Agriculture10 months ago
Evapotranspiration, Irrigation, Dew/frost - Water Balance Data for The Bushland, Texas Maize for Grain Datasets

This dataset contains water balance data for each growing season (year) when maize was grown for grain at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU) research weather station, Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL). Maize was grown for grain on two large, precision weighing lysimeters, each in the center of a 4.44 ha square field. Irrigation was by linear move sprinkler system in 1989, 1990, and 1994. In 2013, 2016, and 2018, maize was grown on four lysimeters; two lysimeters and their respective fields were irrigated using subsurface drip irrigation (SDI), and two lysimeters and their respective fields were irrigated by a linear move sprinkler system. Irrigations were managed to replenish soil water used by the crop on a weekly or more frequent basis as determined by soil profile water content readings made with a neutron probe to 2.4-m depth in the field. The weighing lysimeters were used to measure relative soil water storage to 0.05 mm accuracy at 5-minute intervals, and the 5-minute change in soil water storage was used along with precipitation and irrigation amounts to calculate crop evapotranspiration (ET), which is reported at 15-minute intervals. Because the large (3 m by 3 m surface area) weighing lysimeters are better rain gages than are tipping bucket gages, the 15-minute precipitation data are derived for each lysimeter from changes in lysimeter mass. The land slope is <1% and flat. The water balance data consist of 15-minute and daily amounts of evapotranspiration (ET), dew/frost fall, precipitation (rain/snow), irrigation, scale counterweight adjustment, and emptying of drainage tanks, all in mm. The values are the result of a rigorous quality control process involving algorithms for detecting dew/frost accumulations, and precipitation (rain and snow). Changes in lysimeter mass due to emptying of drainage tanks, counterweight adjustment, maintenance activity, and harvest are accounted for such that ET values are minimally affected. The ET data should be considered to be the best values offered in these datasets. Even though ET data are also presented in the "lysimeter" datasets, the values herein are the result of a more rigorous quality control process. Dew and frost accumulation varies from year to year and seasonally within a year, and it is affected by lysimeter surface condition [bare soil, tillage condition, residue amount and orientation (flat or standing), etc.]. Particularly during winter and depending on humidity and cloud cover, dew and frost accumulation sometimes accounts for an appreciable percentage of total daily ET. These datasets originate from research aimed at determining crop water use (ET), crop coefficients for use in ET-based irrigation scheduling based on a reference ET, crop growth, yield, harvest index, and crop water productivity as affected by irrigation method, timing, amount (full or some degree of deficit), agronomic practices, cultivar, and weather. Prior publications have focused on maize ET, crop coefficients, and crop water productivity. Crop coefficients have been used by ET networks. The data have utility for testing simulation models of crop ET, growth, and yield and have been used by the Agricultural Model Intercomparison and Improvement Project (AgMIP), by OPENET, and by many others for testing, and calibrating models of ET that use satellite and/or weather data.

0
No licence known
Tags:
EvapotranspirationMaizeNP211detailed precipitationdew accumulationfrostirrigation
Formats:
XLSX
United States Department of Agriculture10 months ago
Evapotranspiration, Irrigation, Dew/frost - Water Balance Data for The Bushland, Texas Soybean Datasets

This dataset contains water balance data for each year when soybean [Glycine max (L.) Merr.] was grown at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU), Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL). Soybean [Glycine max (L.) Merr.] was grown on two large, precision weighing lysimeters, each in the center of a 4.44 ha square field in 1995, 2003, 2004 and 2010. Soybean was grown on four large, precision weighing lysimeters and their surrounding 4.4-ha fields in 2019. Irrigation in 1995, 2003, 2004, and 2010 was by linear move sprinkler system. Irrigation in 2019 was by subsurface drip irrigation (SDI) system on the northeast (NE) and southeast (SE) weighing lysimeters an fields, while irrigation was by linear move sprinkler system on the northwest (NW) and southwest (SW) lysimeters and fields. Full irrigations were managed to replenish soil water used by the crop on a weekly or more frequent basis as determined by soil profile water content readings made with a neutron probe to 2.4-m depth in the field. Deficit irrigations were less than full - see crop calendars and irrigation data in these files for details. The weighing lysimeters were used to measure relative soil water storage to 0.05 mm accuracy at 5-minute intervals, and the 5-minute change in soil water storage was used along with precipitation and irrigation amounts to calculate crop evapotranspiration (ET), which is reported at 15-minute intervals. Because the large (3 m by 3 m surface area) weighing lysimeters are better rain gages than are tipping bucket gages, the 15-minute precipitation data are derived for each lysimeter from changes in lysimeter mass. The land slope is <0.3% and flat. The water balance data consist of 15-minute and daily amounts of evapotranspiration (ET), dew/frost fall, precipitation (rain/snow), irrigation, scale counterweight adjustment, and emptying of drainage tanks, all in mm. The values are the result of a rigorous quality control process involving algorithms for detecting dew/frost accumulations, and precipitation (rain and snow). Changes in lysimeter mass due to emptying of drainage tanks, counterweight adjustment, maintenance activity, and harvest are accounted for such that ET values are minimally affected. The ET data should be considered to be the best values offered in these datasets. Even though ET data are also presented in the "lysimeter" datasets, the values herein are the result of a more rigorous quality control process. Dew and frost accumulation varies from year to year and seasonally within a year, and it is affected by lysimeter surface condition [bare soil, tillage condition, residue amount and orientation (flat or standing), etc.]. Particularly during winter and depending on humidity and cloud cover, dew and frost accumulation sometimes accounts for an appreciable percentage of total daily ET. These datasets originate from research aimed at determining crop water use (ET), crop coefficients for use in ET-based irrigation scheduling based on a reference ET, crop growth, yield, harvest index, and crop water productivity as affected by irrigation method, timing, amount (full or some degree of deficit), agronomic practices, cultivar, and weather. Prior publications have focused on crop ET, crop coefficients, and crop water productivity. Crop coefficients have been used by ET networks. The data have utility for testing simulation models of crop ET, growth, and yield. See the README for descriptions of each data file.

0
No licence known
Tags:
EvapotranspirationNP211detailed precipitationdew accumulationfrostirrigationsoybean
Formats:
XLSXTXT
United States Department of Agriculture10 months ago
Evapotranspiration, Irrigation, Dew/frost - Water Balance Data for The Bushland, Texas Sunflower Datasets

This dataset contains water balance data for each year when sunflower was grown at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU), Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL). Sunflower was grown on two large, precision weighing lysimeters, each in the center of a 4.44 ha square field in 2009 and 2011. Irrigation was by linear move sprinkler system. Full irrigations were managed to replenish soil water used by the crop on a weekly or more frequent basis as determined by soil profile water content readings made with a neutron probe to 2.4-m depth in the field. Deficit irrigations were less than full - see crop calendars and irrigation data in these files for details. The weighing lysimeters were used to measure relative soil water storage to 0.05 mm accuracy at 5-minute intervals, and the 5-minute change in soil water storage was used along with precipitation and irrigation amounts to calculate crop evapotranspiration (ET), which is reported at 15-minute intervals. Because the large (3 m by 3 m surface area) weighing lysimeters are better rain gages than are tipping bucket gages, the 15-minute precipitation data are derived for each lysimeter from changes in lysimeter mass. The land slope is <0.3% and flat. The water balance data consist of 15-minute and daily amounts of evapotranspiration (ET), dew/frost fall, precipitation (rain/snow), irrigation, scale counterweight adjustment, and emptying of drainage tanks, all in mm. The values are the result of a rigorous quality control process involving algorithms for detecting dew/frost accumulations, and precipitation (rain and snow). Changes in lysimeter mass due to emptying of drainage tanks, counterweight adjustment, maintenance activity, and harvest are accounted for such that ET values are minimally affected. The ET data should be considered to be the best values offered in these datasets. Even though ET data are also presented in the "lysimeter" datasets, the values herein are the result of a more rigorous quality control process. Dew and frost accumulation varies from year to year and seasonally within a year, and it is affected by lysimeter surface condition [bare soil, tillage condition, residue amount and orientation (flat or standing), etc.]. Particularly during winter and depending on humidity and cloud cover, dew and frost accumulation sometimes accounts for an appreciable percentage of total daily ET. These datasets originate from research aimed at determining crop water use (ET), crop coefficients for use in ET-based irrigation scheduling based on a reference ET, crop growth, yield, harvest index, and crop water productivity as affected by irrigation method, timing, amount (full or some degree of deficit), agronomic practices, cultivar, and weather. Prior publications have focused on sunflower ET, crop coefficients, and crop water productivity. Crop coefficients have been used by ET networks. The data have utility for testing simulation models of crop ET, growth, and yield.

0
No licence known
Tags:
EvapotranspirationNP211detailed precipitationdew accumulationfrostirrigationsunflower
Formats:
XLSX
United States Department of Agriculture10 months ago
Evapotranspiration, Irrigation, Dew/frost - Water Balance Data for The Bushland, Texas Winter Wheat Datasets

This dataset contains water balance data for each year when winter wheat was grown at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU) research weather station, Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL). Winter wheat was grown on two large, precision weighing lysimeters, each in the center of a 4.44 ha square field in the 1989-1990, 1991-1992, and 1992-1993 seasons. Irrigation was by linear move sprinkler system. Full irrigations were managed to replenish soil water used by the crop on a weekly or more frequent basis as determined by soil profile water content readings made with a neutron probe to 2.4-m depth in the field. Deficit irrigations were less than full - see crop calendars and irrigation data in these files for details. The weighing lysimeters were used to measure relative soil water storage to 0.05 mm accuracy at 5-minute intervals, and the 5-minute change in soil water storage was used along with precipitation and irrigation amounts to calculate crop evapotranspiration (ET), which is reported at 15-minute intervals. Because the large (3 m by 3 m surface area) weighing lysimeters are better rain gages than are tipping bucket gages, the 15-minute precipitation data are derived for each lysimeter from changes in lysimeter mass. The land slope is <0.3% and flat. The water balance data consist of 15-minute and daily amounts of evapotranspiration (ET), dew/frost fall, precipitation (rain/snow), irrigation, scale counterweight adjustment, and emptying of drainage tanks, all in mm. The values are the result of a rigorous quality control process involving algorithms for detecting dew/frost accumulations, and precipitation (rain and snow). Changes in lysimeter mass due to emptying of drainage tanks, counterweight adjustment, maintenance activity, and harvest are accounted for such that ET values are minimally affected. The ET data should be considered to be the best values offered in these datasets. Even though ET data are also presented in the "lysimeter" datasets, the values herein are the result of a more rigorous quality control process. Dew and frost accumulation varies from year to year and seasonally within a year, and it is affected by lysimeter surface condition [bare soil, tillage condition, residue amount and orientation (flat or standing), etc.]. Particularly during winter and depending on humidity and cloud cover, dew and frost accumulation sometimes accounts for an appreciable percentage of total daily ET. These datasets originate from research aimed at determining crop water use (ET), crop coefficients for use in ET-based irrigation scheduling based on a reference ET, crop growth, yield, harvest index, and crop water productivity as affected by irrigation method, timing, amount (full or some degree of deficit), agronomic practices, cultivar, and weather. Prior publications have focused on winter wheat ET, crop coefficients, and crop water productivity. Crop coefficients have been used by ET networks. The data have utility for testing simulation models of crop ET, growth, and yield.

0
No licence known
Tags:
EvapotranspirationNP211detailed precipitationdew accumulationfrostirrigationwinter wheat
Formats:
XLSX
United States Department of Agriculture10 months ago
USDA Web Soil SurveySource

Web Soil Survey (WSS) provides soil data and information produced by the National Cooperative Soil Survey. It is operated by the USDA Natural Resources Conservation Service (NRCS) and provides access to the largest natural resource information system in the world. NRCS has soil maps and data available online for more than 95 percent of the nation’s counties and anticipates having 100 percent in the near future. The site is updated and maintained online as the single authoritative source of soil survey information.

0
Other (Public Domain)
Tags:
AASHTOHorizonNRCSNational Cooperative Soil SurveyNatural Resources Conservation ServiceSSURGOSTATSGO2animal disposalavailable water capacitybivouac areascalcium carbonatecanopy covercapability classcation exchangeclaycompostingconductivityconsistencecorrosioncrop yieldcrop yieldsdikesdrainage classecological classificationembankmentserosionexcavationsfarmfarmlandfighting positionfloodingforestfragmentsfrostgeomorphicgolfgravelgypsumhelicopter landinghydrick factorlandfillslandscapinglawnsleveeslinear extensibilityliquid limitmanuremap unitmineral particlesmineralogymoistureorganic matterpHpermeabilityplantsplasticity indexpondpondingporesproductivtyradioactive accumulationradioactive sequestrationreclamation materialsrestrictive layerroadfillroadsrubble disposalrunoffsalinitysand contentsand sourcesanitary landfillseptic tank absorptionsewagesewage sludgesieve analysissiltslopesodium absorptionsoilsoil mapsoil surveysubsidencesurface morphometryt factortemperaturetexturetopsoiltrafficabilitywastewaterwastewater dosposalwater tablewind erodibilitywindbreak
Formats:
ZIP
United States Department of Agricultureabout 1 year ago